初中数学中考复习 专题08 一次函数【考点巩固】(解析版)_第1页
初中数学中考复习 专题08 一次函数【考点巩固】(解析版)_第2页
初中数学中考复习 专题08 一次函数【考点巩固】(解析版)_第3页
初中数学中考复习 专题08 一次函数【考点巩固】(解析版)_第4页
初中数学中考复习 专题08 一次函数【考点巩固】(解析版)_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题08一次函数考点1:一次函数图象与性质1.(2021·辽宁丹东市·中考真题)若实数k、b是一元二次方程的两个根,且,则一次函数的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】C【分析】根据一元二次方程的解法求出k、b的值,由一次函数的图像即可求得.【详解】∵实数k、b是一元二次方程的两个根,且,∴,∴一次函数表达式为,有图像可知,一次函数不经过第三象限.故选:C.2.(2021·黑龙江大庆市·中考真题)已知反比例函数,当时,随的增大而减小,那么一次的数的图像经过第()A.一,二,三象限 B.一,二,四象限C.一,三,四象限 D.二,三,四象限【答案】B【分析】根据反比例函数的增减性得到,再利用一次函数的图象与性质即可求解.【详解】解:∵反比例函数,当时,随的增大而减小,∴,∴的图像经过第一,二,四象限,故选:B.3.(2021·湖北中考真题)下列说法正确的是()A.函数的图象是过原点的射线 B.直线经过第一、二、三象限C.函数,y随x增大而增大 D.函数,y随x增大而减小【答案】C【分析】根据一次函数的图象与性质、反比例函数的图象与性质逐项判断即可得.【详解】A、函数的图象是过原点的直线,则此项说法错误,不符题意;B、直线经过第一、二、四象限,则此项说法错误,不符题意;C、函数,随增大而增大,则此项说法正确,符合题意;D、函数,随增大而增大,则此项说法错误,不符题意;故选:C.4.(2020•成都)一次函数y=(2m﹣1)x+2的值随x值的增大而增大,则常数m的取值范围为.【分析】先根据一次函数的性质得出关于m的不等式2m﹣1>0,再解不等式即可求出m的取值范围.【解析】∵一次函数y=(2m﹣1)x+2中,函数值y随自变量x的增大而增大,∴2m﹣1>0,解得m>1故答案为:m>1考点2:一次函数解析式的确定5.(2021·甘肃武威市·中考真题)将直线向下平移2个单位长度,所得直线的表达式为()A. B. C. D.【答案】A【分析】只向下平移,让比例系数不变,常数项减去平移的单位即可.【详解】解:直线向下平移2个单位后所得直线的解析式为故选:A6.(2021·安徽)某品牌鞋子的长度ycm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16cm,44码鞋子的长度为27cm,则38码鞋子的长度为()A.23cm B.24cm C.25cm D.26cm【答案】B【分析】设,分别将和代入求出一次函数解析式,把代入即可求解.【详解】解:设,分别将和代入可得:,解得,∴,当时,,故选:B.7.(2021·陕西中考真题)在平面直角坐标系中,若将一次函数的图象向左平移3个单位后,得到个正比例函数的图象,则m的值为()A.-5 B.5 C.-6 D.6【答案】A【分析】根据函数图像平移的性质求出平移以后的解析式即可求得m的值.【详解】解:将一次函数的图象向左平移3个单位后得到的解析式为:,化简得:,∵平移后得到的是正比例函数的图像,∴,解得:,故选:A.8.(2021·山东中考真题)甲、乙、丙三名同学观察完某个一次函数的图象,各叙述如下:甲:函数的图象经过点(0,1);乙:y随x的增大而减小;丙:函数的图象不经过第三象限.根据他们的叙述,写出满足上述性质的一个函数表达式为_______.【答案】y=-x+1(答案不唯一).【分析】设一次函数解析式为y=kx+b,根据函数的性质得出b=1,k<0,从而确定一次函数解析式,本题答案不唯一.【详解】解:设一次函数解析式为y=kx+b,∵函数的图象经过点(0,1),∴b=1,∵y随x的增大而减小,∴k<0,取k=-1,∴y=-x+1,此函数图象不经过第三象限,∴满足题意的一次函数解析式为:y=-x+1(答案不唯一).9.(2021·四川泸州市·中考真题)一次函数y=kx+b(k≠0)的图像与反比例函数的图象相交于A(2,3),B(6,n)两点(1)求一次函数的解析式(2)将直线AB沿y轴向下平移8个单位后得到直线l,l与两坐标轴分别相交于M,N,与反比例函数的图象相交于点P,Q,求的值【答案】(1)一次函数y=,(2).【分析】(1)利用点A(2,3),求出反比例函数,求出B(6,1),利用待定系数法求一次函数解析式;(2)利用平移求出y=,联立,求出P(-6,-1),Q(-2,-3),在Rt△MON中,由勾股定理MN=,PQ=即可.【详解】解:(1)∵反比例函数的图象过A(2,3),∴m=6,∴6n=6,∴n=1,∴B(6,1)一次函数y=kx+b(k≠0)的图像与反比例函数的图象相交于A(2,3),B(6,1)两点,∴,解得,一次函数y=,(2)直线AB沿y轴向下平移8个单位后得到直线l,得y=,当y=0时,,,当x=0时,y=-4,∴M(-8,0),N(0,-4),,消去y得,解得,解得,,∴P(-6,-1),Q(-2,-3),在Rt△MON中,∴MN=,∴PQ=,∴.考点3:一次函数与方程、不等式的关系10.(2021·内蒙古赤峰市·中考真题)点在函数的图象上,则代数式的值等于()A.5 B.-5 C.7 D.-6【答案】B【分析】把点P的坐标代入一次函数解析式可以求得a、b间的数量关系,所以易求代数式8a-2b+1的值.【详解】解:∵点P(a,b)在一次函数的图象上,∴b=4a+3,8a-2b+1=8a-2(4a+3)+1=-5,即代数式的值等于-5.故选:B.11.(2020•乐山)直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b≤2的解集是()A.x≤﹣2 B.x≤﹣4 C.x≥﹣2 D.x≥﹣4【分析】根据待定系数法求得直线的解析式,然后求得函数y=2时的自变量的值,根据图象即可求得.【解析】∵直线y=kx+b与x轴交于点(2,0),与y轴交于点(0,1),∴2k+∴直线为y=-12当y=2时,2=-12x+1,解得由图象可知:不等式kx+b≤2的解集是x≥﹣2,故选:C.12.(2020•济宁)数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是()A.x=20 B.x=5 C.x=25 D.x=15【分析】两直线的交点坐标为两直线解析式所组成的方程组的解.【解析】∵直线y=x+5和直线y=ax+b相交于点P(20,25)∴直线y=x+5和直线y=ax+b相交于点P为x=20.故选:A.考点4:一次函数的实际应用13.(2021·甘肃武威市·中考真题)如图1,小刚家,学校、图书馆在同一条直线上,小刚骑自行车匀速从学校到图书馆,到达图书馆还完书后,再以相同的速度原路返回家中(上、下车时间忽略不计).小刚离家的距离与他所用的时间的函数关系如图2所示.(1)小刚家与学校的距离为___________,小刚骑自行车的速度为________;(2)求小刚从图书馆返回家的过程中,与的函数表达式;(3)小刚出发35分钟时,他离家有多远?【答案】(1)3000,200;(2);(3)【分析】(1)从起点处为学校出发去处为图书馆,可求小刚家与学校的距离为3000m,小刚骑自行车匀速行驶10分钟,从3000m走到5000m可求骑自行车的速度即可;(2)求出从图书馆出发时的时间与路程和回到家是的时间与路程,利用待定系数法求解析式即可;(3)小刚出发35分钟,在返回家的时间内,利用函数解析式求出当时,函数值即可.【详解】解:(1)小刚骑自行车匀速从学校到图书馆,从起点3000m处为学校出发去5000m处为图书馆,∴小刚家与学校的距离为3000m,小刚骑自行车匀速行驶10分钟,从3000m走到5000m,行驶的路程为5000-3000=2000m,骑自行车的速度为2000÷10=200m/min,故答案为:3000,200;(2)小刚从图书馆返回家的时间:.总时间:.设返回时与的函数表达式为,把代入得:,解得,,.(3)小刚出发35分钟,即当时,,答:此时他离家.14.(2021·贵州毕节市·中考真题)某中学计划暑假期间安排2名老师带领部分学生参加红色旅游.甲、乙两家旅行社的服务质量相同,且报价都是每人1000元,经协商,甲旅行社的优惠条件是:老师、学生都按八折收费:乙旅行社的优惠条件是:两位老师全额收费,学生都按七五折收费,(1)设参加这次红色旅游的老师学生共有名,,(单位:元)分别表示选择甲、乙两家旅行社所需的费用,求,关于的函数解析式;(2)该校选择哪家旅行社支付的旅游费用较少?【答案】(1),(2)当学生人数超过10人时,选择乙旅行社支付的旅游费最少;当学生人数少于10人时,选择甲旅行社支付的旅游费最少;学生人数等于10人时,选择甲、乙旅行社支付费用相等.【分析】(1)根据旅行社的收费=老师的费用+学生的费用,再由总价=单价×数量就可以得出、与x的函数关系式;(2)根据(1)的解析式,若,,,分别求出相应x的取值范围,即可判断哪家旅行社支付的旅游费用较少.【详解】(1)由题意,得,,答:、与x的函数关系式分别是:,(2)当时,,解得,当时,,解得,当时,,解得,答:当学生人数超过10人时,选择乙旅行社支付的旅游费最少;当学生人数少于10人时,选择甲旅行社支付的旅游费最少;学生人数等于10人时,选择甲、乙旅行社支付费用相等.15.(2021·辽宁大连市·中考真题)如图,四边形为矩形,,,P、Q均从点B出发,点P以2个单位每秒的速度沿的方向运动,点Q以1个单位每秒的速度沿运动,设运动时间为t秒.(1)求的长;(2)若,求S关于t的解析式.【答案】(1);(2)【分析】(1)由题意易得,然后根据勾股定理可求解;(2)由题意易得①当点P在AB上时,即,则,②当点P在AC上,点Q在BC上时,即,过点P作PE⊥BC于点E,然后可得,③当点P与点C重合,点Q在CD上时,即,则有,进而根据面积计算公式可求解.【详解】解:(1)∵四边形是矩形,∴,∵,,∴;(2)由题意得当点P到达点C时,点Q恰好到达点C,则有:当点P在AB上时,即,如图所示:∴,∴;当点P在AC上,点Q在BC上时,即,过点P作PE⊥BC于点E,如图所示:∴,由(1)可得,∴,∴;当点P与点C重合,点Q在CD上时,即,如图所示:∴,∴;综上所述:S关于t的解析式为.16.(2021·黑龙江绥化市·中考真题)小刚和小亮两人沿着直线跑道都从甲地出发,沿着同一方向到达乙地,甲乙两地之间的距离是720米,先到乙地的人原地休息,已知小刚先从甲地出发4秒后,小亮从甲地出发,两人均保持匀速前行.第一次相遇后,保持原速跑一段时间,小刚突然加速,速度比原来增加了2米/秒,并保持这一速度跑到乙地(小刚加速过程忽略不计).小刚与小亮两人的距离(米)与小亮出发时间(秒)之间的函数图象,如图所示.根据所给信息解决以下问题.(1)_______,______;(2)求和所在直线的解析式;(3)直接写出为何值时,两人相距30米.【答案】(1);(2);;(3)t为46,50,110,138时,两人相距30米.【分析】(1)依次分析A、B、C、D、E、F各点坐标的实际意义:A点是小刚先走了4秒,B点小亮追上小刚,相遇,C点是小刚开始加速,D点是小刚追上小亮,E点是小刚到达乙地,F点是小亮到达乙地,则根据A点的意义,可以求出的值,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论