45#钢表面激光织构化及其干摩擦特性研究_第1页
45#钢表面激光织构化及其干摩擦特性研究_第2页
45#钢表面激光织构化及其干摩擦特性研究_第3页
45#钢表面激光织构化及其干摩擦特性研究_第4页
45#钢表面激光织构化及其干摩擦特性研究_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

45#钢表面激光织构化及其干摩擦特性研究摘要

为了提高45#钢干摩擦性能,本文采用激光表面处理技术对45#钢表面进行了改性,对比研究了原始样品和激光织构化样品的表面形貌、化学成分、硬度以及干摩擦性能等性质。结果表明,激光织构化处理后,45#钢表面形貌变化明显,表面粗糙度、润湿性和表面能显著提升;同时,激光织构化后的样品硬度也有所提高,说明其表面层的晶格结构发生改变;在干摩擦测试中,激光织构化后的45#钢样品与不织构化的样品相比,有更低的摩擦系数和更高的抗磨损性能,表现出优异的干摩擦性能。

关键词:45#钢;激光表面处理;织构化;干摩擦性能;表面形貌

Introduction

45#steelisacommonlyusedmediumcarbonsteelmaterialinindustry,whichhasgoodstrength,toughnessandwearresistance.However,thesurfaceof45#steelisusuallysmoothandlackssurfacetexturing,makingitdifficulttoexhibitgoodfrictionandwearresistanceindryfrictionconditions.Inordertoimprovethedryfrictionperformanceof45#steel,lasersurfacemodificationtechnologycanbeusedtotexturethesurfaceofthesteel,whichcanchangethesurfacemorphology,microstructureandsurfacewettabilityofthesteel,therebyenhancingitsmechanicalpropertiesandfrictionresistance.

ExperimentalMethods

Inthisstudy,thesurfaceof45#steelsamplesweretreatedbylasersurfacemodificationtechnology.Thechangesinsurfacemorphology,wettability,chemicalcompositionandmechanicalpropertiesbeforeandafterlasertexturingwereanalyzedbyscanningelectronmicroscopy(SEM),X-rayphotoelectronspectroscopy(XPS),surfaceprofilerandVickershardnesstester.Thedryfrictionpropertiesofthesampleswereevaluatedbyapin-on-disctribometer.

ResultsandDiscussion

Comparedwiththesmoothsurfaceoftheoriginalsample,thesurfaceofthelaser-textured45#steelsampleshowedasignificantincreaseinsurfaceroughness,withdifferentsizesanddensitiesofbumpsandpitsformedonthesurface,whichcaneffectivelyincr4easethesurfaceareaofthesteelandcreateahydrophobicsurface.Thechemicalcompositionofthesteelsurfacewasalsochangedafterlasertreatment,thecarboncontentandoxygencontentincreased,andthecontentofFedecreased,indicatingthattheoxidelayerwasformedonthesurfaceofthesample.Themicrohardnessofthelaser-texturedsamplewashigherthanthatoftheoriginalsample,whichindicatesthatthesurfacelayerofthesteelhasbeenstrengthened.

Inthedryfrictiontest,thelaser-textured45#steelsampleshowedsignificantlylowerfrictioncoefficientandbetterwearresistancethanthenon-texturedsample,indicatingthatthesurfacetexturingcaneffectivelyreducethecontactareaandadhesionbetweenthesampleandthefrictionsurface,whilecreatingahydrophobicsurfacethatreducesthesurfaceenergyofthesampleandprovidesbetterdryfrictionperformance.

Conclusion

Inthispaper,thesurfaceof45#steelwastreatedbylasertexturingandthedryfrictionperformanceofthetexturedsteelwasstudied.Theresultsshowedthatlasertexturingcaneffectivelyimprovethesurfacemorphology,wettability,andmechanicalpropertiesof45#steel,andeffectivelyenhanceitsdryfrictionperformance,exhibitingalowerfrictioncoefficientandbetterwearresistancethanthenon-texturedsample.Thisstudyprovidesatheoreticalreferenceandtechnicalsupportforthesurfacetreatmentandenhancementof45#steelandothersteelmaterials.

Keywords:45#steel;lasersurfacetreatment;texturing;dryfrictionperformance;surfacemorphologyInadditiontotheadvantagesmentionedabove,lasersurfacemodificationtechnologyalsohasthebenefitsofhighprecision,flexibilityandenvironmentalfriendliness.Lasercanbeusedtoselectivelyablateormeltthesurfacelayerofthematerial,anddifferentlaserparameterscanbeadjustedtoachievedifferentsurfacetextures,patternsorstructures,whichcanmeetvariousrequirementsforsurfacepropertiesandenhancethefunctionalperformanceofmaterials.Moreover,lasersurfacemodificationdoesnotrequireadditionalcoatingsorchemicals,whichreducestheproductioncostandenvironmentalfootprint.

Theapplicationoflasersurfacemodificationtechnologyisnotlimitedto45#steel,butalsowidelyusedinothermetallic,ceramicandpolymermaterials.Forexample,itcanbeusedtoimprovetheanti-corrosion,anti-wear,anti-foulingandanti-icingpropertiesofmaterialsinvariousindustries,suchasautomobile,aerospace,biomedicalandenergysectors.Withthedevelopmentoflasertechnologyandmaterialsscience,moreadvancedandcomplexsurfacestructurescanbeachievedbylasertexturing,suchashierarchicalandgradientstructures,functionalandresponsivesurfaces,bio-inspiredandbiomimeticsurfaces,etc.

However,therearealsosomechallengesandlimitationsintheapplicationoflasersurfacemodificationtechnology,suchastheoptimizedselectionoflaserparameters,thecontrolofsurfaceroughnessandmorphology,thereproducibilityandscalabilityoftheprocess,theintegrationandcompatibilitywithothermanufacturingprocessesandmaterials,andthesafetyandhealthofoperatorsandusers.Therefore,furtherresearchanddevelopmentareneededtoovercomethesechallengesandexpandthescopeandimpactoflasersurfacemodificationtechnology.Anotheradvantageoflasersurfacemodificationtechnologyisthatithaslowthermaleffectonthesubstratematerial.Thelaserenergyispreciselycontrolledandlocalizedtothesurfacelayer,withoutcausingsignificantdeformation,cracking,orresidualstressesinthebulkmaterial.Thisensurestheintegrityandstabilityofthematerial,whileimprovingitssurfaceproperties.Incontrast,traditionalsurfacetreatmentmethods,suchasshotpeening,sandblasting,orchemicaletching,maycausemechanicaldamage,surfacecontamination,orresidualstrains,whichcanreducethereliabilityanddurabilityofthematerial.

Moreover,lasersurfacemodificationtechnologycanalsoenhancethetribologicalpropertiesofmaterials.Byadjustingthelaserparameters,suchasfluence,pulseduration,andoverlap,onecancreatedifferenttypesofsurfacetexturesandpatterns,suchasgrooves,dimples,dots,orlines.Thesestructurescanimprovethelubrication,adhesion,andwearresistanceofthematerial,especiallyunderextremeconditions,suchashighspeed,highload,orharshenvironment.Furthermore,lasersurfacemodificationcanalsointroducefunctionalgroupsorcoatingsontothesurface,suchashydrophobic,hydrophilic,orself-healingmolecules,whichcanfurtherenhancethesurfacepropertiesandpreventcorrosion,fouling,ordegradation.

Despitetheseadvantages,therearesomechallengesandlimitationsintheapplicationoflasersurfacemodificationtechnology.Theselectionoflaserparametersiscriticaltoachievethedesiredsurfacemorphologyandchemicalmodification,anditrequiresextensiveexperimentaltestingandoptimization.Thereproducibilityandscalabilityoftheprocessalsodependontheprecisionandstabilityofthelasersystem,andthecontrolofenvironmentalconditions,suchastemperature,humidity,orcontamination.Inaddition,theintegrationoflasersurfacemodificationwithothermanufacturingprocesses,suchasmachining,welding,orcoating,mustbecarefullydesignedandevaluatedtoavoidinterferenceordamagetothesurfacestructureandproperties.Therefore,moreresearchanddevelopmenteffortsareneededtoovercomethesechallenges,andtoexplorethefullpotentialoflasersurfacemodificationtechnologyforvariousindustrialapplications.Anotherimportantaspectoflasersurfacemodificationtechnologyisitsabilitytooptimizetheperformanceandefficiencyofvariousindustrialprocesses,suchasmachining,welding,additivemanufacturing,orsurfacecoatings.Bytailoringthesurfacepropertiesoftheworkpieceorsubstrate,lasersurfacemodificationcanimprovethecutting,drilling,andmillingperformanceoftools,reducethefrictionandwearonthecontactsurfaces,enhancethebondingandadhesionofcoatings,andincreasethecorrosionresistanceanddurabilityofcomponents.

Forexample,inthefieldofmachining,lasersurfacemodificationcanbeusedtoinducecompressiveresidualstresses,reducesurfaceroughness,andenhancethelubricationandcoolingpropertiesofthecuttingtools.Thiscanleadtolongertoollife,fastercuttingspeeds,andbettersurfacefinishofthemachinedparts.Inthefieldofwelding,lasersurfacemodificationcanbeappliedtoprepareandcleanthejointsurfaces,improvethewettingandcontactanglesofthefillermaterial,andenhancethemetallurgicalbondingandstrengthoftheweldseam.Thiscanresultinhigherqualityandreliabilityoftheweldedcomponents.

Inthefieldofadditivemanufacturing,lasersurfacemodificationcanalsoplayanimportantroleinimprovingtheadhesionandbondingofthedepositedlayers,reducingtheporosityandcrackingoftheprintedparts,andachievingbettermechanicalandfunctionalpropertiesofthefinalproducts.Byusinglasersurfacemodificationbeforeoraftertheprintingprocess,onecancontrolthemorphology,texture,andchemistryofthesurfacelayer,andthus,enhancetheoverallperformanceandqualityoftheadditivemanufacturedparts.

Overall,lasersurfacemodificationtechnologyhasdiverseandpromisingapplicationsinvariousindustries,suchasaerospace,automotive,biomedical,energy,andelectronics.Itsuniqueadvantages,suchasprecision,versatility,andlowthermaleffect,makeitavaluabletoolforoptimizingthesurfacepropertiesofmaterialsandcomponents,andimprovingtheefficiency,reliability,andsustainabilityofindustrialprocesses.However,furtherresearchanddevelopmentarenecessarytoovercomethechallengesandlimitationsofthistechnology,andtoexpanditsscopeandimpactinthefuture.Oneofthekeychallengesinlasersurfacemodificationtechnologyistoachieveapreciseanduniformtreatmentofthesurface,especiallyforlargeandcomplexgeometries.Thisrequiresadvancedscanningandmonitoringtechniquesthatcancontrolthelaserbeamsize,shape,fluence,andfrequency,andensureaconsistentcoverageanddepthofthemodifiedlayer.Moreover,thelaserparameteroptimizationneedstotakeintoaccountthematerialproperties,suchascomposition,microstructure,andsurfaceroughness,aswellasthedesiredsurfaceproperties,suchashardness,roughness,wettability,andadhesion.

Anotherlimitationoflasersurfacemodificationisitsrelativelyslowprocessingspeed,comparedtoothersurfacetreatmentmethods,suchasplasmaspraying,electroplating,orionimplantation.Thisisduetothefactthatlasersurfacemodificationtypicallyinvolvesalocalizedheattreatmentofthesurfacelayer,whichcaninduceresidualstresses,phasetransformations,andmicrostructurechangesthatrequirecarefulcontrolandmonitoring.However,recentadvancesinhigh-powerandultrafastlasershaveenabledfasterandmoreefficientlasersurfacemodification,withreducedthermalimpactandimprovedsurfacequality.

Finally,lasersurfacemodificationalsoraisesconcernsabouttheenvironmental,health,andsafetyimplicationsoftheprocess,particularlyintermsofthepotentialemissionsofhazardousfumes,particles,orradiation.Properhandling,ventilation,andwastemanagementproceduresareneededtoensurethecompliancewiththeregulatorystandardsandtheprotectionoftheworkers,thepublic,andtheenvironment.

Despitethesechallengesandlimitations,lasersurfacemodificationtechnologyofferssignificantbenefitsintermsofimprovingtheperformanceanddurabilityofindustrialcomponents,reducingthemaintenanceandreplacementcosts,andenhancingtheoverallefficiencyandsustainabilityoftheproductionprocesses.Therefore,thecontinuedresearchanddevelopmentoflasersurfacemodificationtechnologyiscrucialforaddressingthegrowingdemandforadvancedmaterialsandfunctionalsurfacesinvariousindustries.Inadditiontothechallengesmentionedearlier,lasersurfacemodificationresearchalsofacesissuesrelatedtosurfacecharacterizationandevaluation.Accurateandreliablesurfaceanalysistechniquesareessentialforunderstandingtheeffectsoflasertreatmentonthesurfaceproperties,identifyingtheoptimizedlaserparameters,andassessingtheperformanceandqualityofthemodifiedsurfaces.Commonsurfaceanalysistechniquesincludescanningelectronmicroscopy(SEM),X-raydiffraction(XRD),atomicforcemicroscopy(AFM),andmicrohardnesstesting.

Moreover,thechoiceofthelasersourceandtheselectionofthesuitablelaserwavelength,pulseduration,repetitionrate,andenergydensitycanalsoaffecttheoutcomeofthesurfacemodificationprocess.Forexample,lasersurfacecleaningandablationcanbeachievedusingshortpulselasers,whilelongerpulselasersareusedforlasersurfacealloying,cladding,anddeposition.Thedevelopmentofnewlasersourcesandtoolkitsthatcanprovideabroaderrangeoflaserparametersandbeamshapescanfurtherextendthecapabilitiesoflasersurfacemodificationtechnology.

Finally,theapplicationoflasersurfacemodificationtechnologyisnotlimitedtoaspecificindustryormaterialtype.Itcanbeusedforvariouspurposes,suchasimprovingwearresistance,corrosionresistance,biocompatibility,thermalstability,oropticalpropertiesofmetallic,ceramic,polymeric,andcompositematerials.Someoftheindustriesthathaveadoptedlasersurfacemodificationtechniquesincludeaerospace,automotive,biomedical,electronics,energy,andmachinery.However,thescalabilityandcost-effectivenessoflasersurfacemodificationprocessesforlarge-scalemanufacturingapplicationsarestillunderinvestigationandrequirefurtheroptimizationandintegrationwithothermanufacturingprocesses.

Insummary,lasersurfacemodificationtechnologypresentsnumerousopportunitiesforenhancingmaterialandsurfaceproperties,butitalsoposesvariouschallengesrelatedtoprecision,speed,safety,andenvironmentalimpact,aswellassurfacecharacterizationandlaserparameteroptimization.Continuedresearchanddevelopmenteffortstoaddressthesechallengescanleadtoabroaderandmoreefficientapplicationoflasersurfacemodificationtechnologyinvariousindustries.Oneofthesignificantchallengesinlasersurfacemodificationisthesafetyissuesassociatedwithlaserradiation.Althoughlaserexposurecanenhancethesurfacecharacteristicsofthematerial,itcanalsocausesevereinjuriesandhealthhazardsifnothandledsafely.Topreventsuchhazards,varioussafetymeasures,suchaslasersafetyglasses,protectivegear,andpropertraining,needtobeimplemented.

Anotherchallengeinlasersurfacemodificationisrelatedtotheenvironmentalimpactoftheprocess.Theuseofcertainlasersystemsproducesharmfulfumes,gases,andparticulatematter,whichcancauseairpollutionandadversehealtheffects.Hence,thelasersystemsshouldbedesignedtoreduceoreliminatetheemissionofpollutantsduringthesurfacemodificationprocess.

Efficientsurfacecharacterizationandevaluationofthemodifiedsurfacesarealsoamongthechallengesfacedinlasersurfacemodificationresearch.Thesurfacepropertiesplayavitalroleindeterminingthefunctionalperformanceofthemodifiedsurfaces.Therefore,reliableandaccuratesurfaceanalysismethodsarerequiredtoassessthesurfacepropertiesofthemodifiedmaterials.Thedevelopmentofnon-destructive,insitu,andreal-timesurfaceanalysistechniquescansignificantlyimprovetheaccuracyandefficiencyofsurfacecharacterization.

Finally,thescalabilityandcost-effectivenessoflasersurfacemodificationtechnologyforlarge-scalemanufacturingapplicationsarealsomajorchallenges.Thehighinitialcapitalcostoflasersystemsandthetime-consumingnatureoftheprocesslimititswidespreadadoptioninindustries.Toimprovescalabilityandcost-effectiveness,itisessentialtodevelopmoreefficientlasersystems,streamlinetheprocess,andintegratethetechnologywithothermanufacturingprocesses.

Inconclusion,lasersurfacemodificationisapromisingtechnologythatcanenhancematerialandsurfacepropertiesinvariousindustries.However,severalchallengesrelatedtosafety,environmentalimpact,surfacecharacterizationandevaluation,andscalabilityandcost-effectivenessneedtobeaddressedforitswidespreadadoption.Continuedresearchanddevelopmentinlasersurfacemodificationcansignificantlyimprovetheefficacyandefficiencyofthetechnology,eventuallyleadingtoitsbroaderindustrialapplication.Oneofthewaystoaddressthechallengesinlasersurfacemodificationistoimprovetheunderstandingoflaser-materialinteraction.Acomprehensiveunderstandingoftheprocessparameters,suchaslaserbeamintensity,duration,wavelength,andspatialdistribution,canleadtobettercontroloverthesurfacemodificationprocess.Additionally,theuseofadvancedmodelingtechniques,suchasFiniteElementAnalysis(FEA),cansimulatethelaser-materialinteractionandoptimizetheprocessparametersforspecificapplications.

Anotherstrategytoovercomethechallengesinlasersurfacemodificationistodevelopandintegratecomplementarytechnologies.Forexample,combininglasersurfacemodificationwithothersurfacetreatmenttechniques,suchasplasmaandchemicaletching,canenhancethesurfacepropertiesofthematerialandimprovetheefficiencyoftheprocess.Additionally,theintegrationofsensorsandmonitoringsystemscanprovidereal-timefeedbackandcontrolovertheprocessparameters,leadingtoimprovedaccuracyandconsistency.

Inrecentyears,theadvancementofadditivemanufacturingtechniques,suchaslaser-based3Dprinting,hasopenedupnewopportunitiesforlasersurfacemodification.3Dprintingwithlasershasbeenshowntoproducecomplexgeometriesandfunctionalstructureswithimprovedmechanical,biological,andchemicalproperties.Theintegrationoflasersurfacemodificationwith3Dprintingcancreatehigh-performancestructureswithtailor-madesurfacecharacteristics,leadingtonewapplicationsinfieldssuchasaerospace,biomedical,andelectronics.

Finally,theadoptionofsustainableandenvironmentallyfriendlyprocessingtechniquescanaddressthechallengesrelatedtotheenvironmentalimpactoflasersurfacemodification.Forexample,theuseofrenewableenergysources,suchassolarpower,canreducethecarbonfootprintoftheprocess.Additionally,theuseofbiodegradableandrecyclablematerialsinthesurfacemodificationprocesscanreducewasteandpromoteacirculareconomy.

Inconclusion,addressingthechallengesinlasersurfacemodificationrequiresamultidisciplinaryapproachthatinvolvestheintegrationofadvancedmodelingtechniques,complementarytechnologies,andsustainableprocessing.Withcontinuedresearchanddevelopment,lasersurfacemodificationhasthepotentialtorevolutionizevariousindustriesandleadtonewapplicationsinfieldssuchasenergystorage,sensors,andmedicaldevices.Oneofthemajorchallengesinlasersurfacemodificatio

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论