版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学必求其心得,业必贵于专精学必求其心得,业必贵于专精学必求其心得,业必贵于专精第二节随机抽样1.简单随机抽样(1)抽取方式:逐个不放回抽取;(2)特点:每个个体被抽到的概率相等;(3)常用方法:抽签法和随机数法.2.分层抽样(1)在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.(2)分层抽样的应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样.3.系统抽样的步骤假设要从容量为N的总体中抽取容量为n的样本.(1)先将总体的N个个体编号;(2)确定分段间隔k,对编号进行分段.当eq\f(N,n)(n是样本容量)是整数时,取k=eq\f(N,n);(3)在第1段用简单随机抽样确定第一个个体编号l(l≤k);(4)按照一定的规则抽取样本.通常是将l加上间隔k得到第2个个体编号l+k,再加k得到第3个个体编号l+2k,依次进行下去,直到获取整个样本.1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)在简单随机抽样中,某一个个体被抽到的可能性与第几次抽取有关,第一次被抽到的可能性最大.()(2)从100件玩具中随机拿出一件,放回后再拿出一件,连续拿5次,是简单随机抽样.()(3)系统抽样适用于元素个数很多且均衡的总体.()(4)要从1002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.()(5)分层抽样中,每个个体被抽到的可能性与层数及分层有关.()(6)某校即将召开学生代表大会,现从高一、高二、高三共抽取60名代表,则可用分层抽样方法抽取.()答案:(1)×(2)×(3)√(4)×(5)×(6)√2.(教材习题改编)老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是()A.随机抽样 B.分层抽样C.系统抽样 D.以上都不是解析:选C因为抽取学号是以5为公差的等差数列,故采用的抽样方法应是系统抽样.3.利用简单随机抽样从含有8个个体的总体中抽取一个容量为4的样本,则总体中每个个体被抽到的概率是________.解析:总体个数为N=8,样本容量为M=4,则每一个个体被抽到的概率为P=eq\f(M,N)=eq\f(4,8)=eq\f(1,2).答案:eq\f(1,2)4.(教材习题改编)某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.解析:设应从高二年级抽取x名学生,则eq\f(x,50)=eq\f(3,10),解得x=15。答案:155.已知某商场新进3000袋奶粉,为检查其三聚氰胺是否超标,现采用系统抽样的方法从中抽取150袋检查,若第一组抽出的号码是11,则第六十一组抽出的号码为________.解析:每组袋数:d=eq\f(3000,150)=20,由题意知这些号码是以11为首项,20为公差的等差数列.a61=11+60×20=1211.答案:1211eq\a\vs4\al(考点一简单随机抽样)eq\a\vs4\al(基础送分型考点——自主练透)[考什么·怎么考]简单随机抽样在高考中单独考查的频率较小,主要涉及随机抽样的特点及随机数法的应用。题型为选择题或填空题,难度较小.1.以下抽样方法是简单随机抽样的是()A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见D.用抽签方法从10件产品中选取3件进行质量检验解析:选D选项A、B不是简单随机抽样,因为抽取的个体间的间隔是固定的;选项C不是简单随机抽样,因为总体的个体有明显的层次;选项D是简单随机抽样.2.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()7816657208026314070243699728019832049234493582003623486969387481A.08 B.07C.02 D.01解析:选D由随机数法的随机抽样的过程可知选出的5个个体是08,02,14,07,01,所以第5个个体的编号是01。3.利用简单随机抽样,从n个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为eq\f(1,3),则在整个抽样过程中,每个个体被抽到的概率为()A。eq\f(1,4) B。eq\f(1,3)C。eq\f(5,14) D。eq\f(10,27)解析:选C根据题意,eq\f(9,n-1)=eq\f(1,3),解得n=28。故在整个抽样过程中每个个体被抽到的概率为eq\f(10,28)=eq\f(5,14)。[怎样快解·准解]1.简单随机抽样的特点(1)抽取的个体数较少;(2)是逐个抽取;(3)是不放回抽取;(4)是等可能抽取.只有四个特点都满足的抽样才是简单随机抽样.2.抽签法与随机数法的适用情况(1)抽签法适用于总体中个体数较少的情况,随机数法适用于总体中个体数较多的情况.(2)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.[易错提醒]利用随机数法抽取样本时,一定要注意“重复的号码”只能记一次,如第2题易误认为第5个个体编号为02而误选.eq\a\vs4\al(考点二系统抽样)eq\a\vs4\al(重点保分型考点——师生共研)系统抽样在高考中单独考查的频率也较小,主要考查系统抽样的抽取方法.题型为选择题或填空题,难度较小。[典题领悟]1.从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为()A.480 B.481C.482 D.483解析:选C根据系统抽样的定义可知样本的编号成等差数列,令a1=7,a2=32,故d=25,所以7+25(n-1)≤500,所以n≤20,最大编号为7+25×19=482。2.中央电视台为了解观众对某综艺节目的意见,准备从502名现场观众中抽取10%进行座谈,现用系统抽样的方法完成这一抽样,则在进行分组时,需剔除________个个体,抽样间隔为________.解析:把502名观众平均分成50组,由于502除以50的商是10,余数是2,所以每组有10名观众,还剩2名观众,采用系统抽样的方法抽样时,应先用简单随机抽样的方法从502名观众中抽取2名观众,这2名观众不参加座谈;再将剩下的500名观众编号为1,2,3,…,500,并均匀分成50段,每段含eq\f(500,50)=10个个体.所以需剔除2个个体,抽样间隔为10.答案:210[解题师说]1.掌握“4特点”(1)适用于元素个数很多且均衡的总体.(2)每个个体被抽到的机会均相等.(3)总体分组后,在起始部分抽样时采用的是简单随机抽样.(4)如果总体容量N能被样本容量n整除,则抽样间隔为k=eq\f(N,n).2.谨防“1易错”用系统抽样法抽取样本,当eq\f(N,n)不为整数时,取k=eq\b\lc\[\rc\](\a\vs4\al\co1(\f(N,n))),即先从总体中用简单随机抽样的方法剔除(N-nk)个个体,且剔除多余的个体不影响抽样的公平性.(如典题领悟第2题)[冲关演练]1.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为()A.11 B.12C.13 D.14解析:选B由系统抽样定义可知,所分组距为eq\f(840,42)=20,每组抽取一人,因为包含整数个组,所以抽取个体在区间[481,720]的数目为eq\f(720-480,20)=12。2.某学校采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做视力检查.现将800名学生从1到800进行编号.已知从33~48这16个数中抽到的数是39,则在第1小组1~16中随机抽到的数是()A.5 B.7C.11 D.13解析:选B把800名学生分成50组,每组16人,各小组抽到的数构成一个公差为16的等差数列,39在第3组,所以第1组抽到的数为39-32=7.eq\a\vs4\al(考点三分层抽样)eq\a\vs4\al(重点保分型考点-—师生共研)分层抽样是每年高考的常考内容,题型既有选择题、填空题,有时也出现在解答题中,难度较小,属于低档题。[典题领悟]1.(2017·江苏高考)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.解析:应从丙种型号的产品中抽取60×eq\f(300,200+400+300+100)=18(件).答案:182.为了了解高一、高二、高三学生的身体状况,现用分层抽样的方法抽取一个容量为1200的样本,三个年级学生人数之比依次为k∶5∶3,已知高一年级共抽取了240人,则高三年级抽取的人数为________.解析:因为高一年级抽取学生的比例为eq\f(240,1200)=eq\f(1,5),所以eq\f(k,k+5+3)=eq\f(1,5),解得k=2,故高三年级抽取的人数为1200×eq\f(3,2+5+3)=360。答案:3603.某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人).篮球组书画组乐器组高一4530a高二151020学校要对这三个小组的活动效果进行抽样调查,按小组分层抽样的方法,从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a的值为________.解析:由题意知eq\f(12,45+15)=eq\f(30,45+15+30+10+a+20),解得a=30。答案:30[解题师说]1.牢记“2关系”进行分层抽样的相关计算时,常用到的2个关系(1)eq\f(样本容量n,总体的个数N)=eq\f(该层抽取的个体数,该层的个体数);(2)总体中某两层的个体数之比等于样本中这两层抽取的个体数之比.2.谨防“1失误”分层抽样时,每层抽取的个体可以不一样多,但必须满足抽取ni=n·eq\f(Ni,N)(i=1,2,…,k)个个体(其中i是层数,n是抽取的样本容量,Ni是第i层中个体的个数,N是总体容量).[冲关演练]1.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3∶5∶7,现用分层抽样的方法抽取容量为n的样本,其中甲种产品有18件,则样本容量n=()A.54 B.90C.45 D.126解析:选B依题意得eq\f(3,3+5+7)×n=18,解得n=90,即样本容量为90。2.为了调查老师对微课堂的了解程度,某市拟采用分层抽样的方法从A,B,C三所中学抽取60名教师进行调查,已知A,B,C三所学校中分别有180,270,90名教师,则从C学校中应抽取的人数为()A.10 B.12C.18 D.24解析:选A根据分层抽样的特征,从C学校中应抽取的人数为eq\f(90,180+270+90)×60=10。普通高中、重点高中共用作业(高考难度一般,无须挖潜)A级—-基础小题练熟练快1.从2018名学生中选取50名学生参加全国数学联赛,若采用以下方法选取:先用简单随机抽样法从2018名学生中剔除18名学生,剩下的2000名学生再按系统抽样的方法抽取,则每名学生入选的概率()A.不全相等 B.均不相等C.都相等,且为eq\f(50,2018) D.都相等,且为eq\f(1,40)解析:选C从N个个体中抽取M个个体,则每个个体被抽到的概率都等于eq\f(M,N),故每名学生入选的概率都相等,且为eq\f(50,2018)。2.(2018·长春一模)完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户,调查社会购买能力的某项指标;②从某中学的15名艺术特长生中选出3名调查学习负担情况.宜采用的抽样方法依次是()A.①简单随机抽样,②系统抽样B.①分层抽样,②简单随机抽样C.①系统抽样,②分层抽样D.①②都用分层抽样解析:选B因为社会购买能力的某项指标受到家庭收入的影响,而社区中各个家庭收入差别明显,所以①用分层抽样法;从某中学的15名艺术特长生中选出3名调查学习负担情况,个体之间差别不大,且总体和样本容量较小,所以②用简单随机抽样法.3.从30个个体(编号为00~29)中抽取10个样本,现给出某随机数表的第11行到第15行(见下表),如果某人选取第12行的第6列和第7列中的数作为第一个数并且由此数向右读,则选取的前4个的号码分别为()9264460720213920776638173256164058587766317005002593054553707814288966286757823115890062004738155131818637094521666553255383270290557196217232071114138443594488A.76,63,17,00 B.16,00,02,30C.17,00,02,25 D.17,00,02,07解析:选D在随机数表中,将处于00~29的号码选出,满足要求的前4个号码为17,00,02,07。4.(2017·怀化二模)某校高三(1)班共有48人,学号依次为1,2,3,…,48,现用系统抽样的方法抽取一个容量为6的样本,已知学号为3,11,19,35,43的同学在样本中,则还有一个同学的学号应为()A.27 B.26C.25 D.24解析:选A根据系统抽样的规则——“等距离”抽取,则抽取的号码差相等,易知相邻两个学号之间的差为11-3=8,所以在19与35之间还有27。5.某小学共有学生2000人,其中一至六年级的学生人数分别为400,400,400,300,300,200.为做好小学放学后“快乐30分”的活动,现采用分层抽样的方法从中抽取容量为200的样本进行调查,那么应抽取一年级学生的人数为()A.120 B.40C.30 D.20解析:选B∵一年级学生共400人,抽取一个容量为200的样本,∴用分层抽样的方法抽取的一年级学生人数为eq\f(400,2000)×200=40.6.采用系统抽样方法从1000人中抽取50人做问卷调查,将他们随机编号1,2,…,1000。适当分组后在第一组采用简单随机抽样的方法抽到的号码为8.若抽到的50人中,编号落入区间[1,400]的人做问卷A,编号落入区间[401,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人数为()A.12 B.13C.14 D.15解析:选A根据系统抽样的特点可知,所有做问卷调查的人的编号构成首项为8,公差d=eq\f(1000,50)=20的等差数列{an},∴通项公式an=8+20(n-1)=20n-12,令751≤20n-12≤1000,得eq\f(763,20)≤n≤eq\f(253,5),又∵n∈N*,∴39≤n≤50,∴做问卷C的共有12人.7.某商场有四类食品,食品类别和种数见下表:类别粮食类植物油类动物性食品类果蔬类种数40103020现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样方法抽取样本,则抽取的植物油类与果蔬类食品种数之和为________.解析:因为总体的个数为40+10+30+20=100,所以根据分层抽样的定义可知,抽取的植物油类食品种数为eq\f(10,100)×20=2,抽取的果蔬类食品种数为eq\f(20,100)×20=4,所以抽取的植物油类与果蔬类食品种数之和为2+4=6。答案:68.某市教育主管部门为了全面了解2018届高三学生的学习情况,决定对该市参加2018年高三第一次全国大联考统考(后称统考)的32所学校进行抽样调查,将参加统考的32所学校进行编号,依次为1到32,现用系统抽样的方法抽取8所学校进行调查,若抽到的最大编号为31,则最小的编号是________.解析:根据系统抽样法,将总体分成8组,组距为eq\f(32,8)=4,若抽到的最大编号为31,则最小的编号是31-4×7=3.答案:39.一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):轿车A轿车B轿车C舒适型100150z标准型300450600按类型用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆,则z的值为________.解析:由题意可得eq\f(50,100+300+150+450+z+600)=eq\f(10,100+300),解得z=400.答案:40010.某企业三个分厂生产同一种电子产品,三个分厂产量分布如图所示,现在用分层抽样方法从三个分厂生产的该产品中共抽取100件做使用寿命的测试,则第一分厂应抽取的件数为________;由所得样品的测试结果计算出一、二、三分厂取出的产品的使用寿命平均值分别为1020小时、980小时、1030小时,估计这个企业所生产的该产品的平均使用寿命为________小时.解析:第一分厂应抽取的件数为100×50%=50;该产品的平均使用寿命为1020×0。5+980×0。2+1030×0.3=1015。答案:501015B级-—中档题目练通抓牢1.某工厂在12月份共生产了3600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a,b,c,且a,b,c构成等差数列,则第二车间生产的产品数为()A.800双 B.1000双C.1200双 D.1500双解析:选C因为a,b,c成等差数列,所以2b=a+c,即第二车间抽取的产品数占抽样产品总数的三分之一,根据分层抽样的性质可知,第二车间生产的产品数占12月份生产总数的三分之一,即为1200双皮靴.2.将参加夏令营的600名学生编号为:001,002,…,600。采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003。这600名学生分住在三个营区,从001到300在A营区,从301到495在B营区,从496到600在C营区,则三个营区被抽中的人数依次为()A.26,16,8 B.25,17,8C.25,16,9 D.24,17,9解析:选B依题意及系统抽样的意义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k(k∈N*)组抽中的号码是3+12(k-1).令3+12(k-1)≤300,得k≤eq\f(103,4),因此A营区被抽中的人数是25;令300<3+12(k-1)≤495,得eq\f(103,4)〈k≤42,因此B营区被抽中的人数是42-25=17,故C营区被抽中的人数为50-25-17=8.3.一个总体中有100个个体,随机编号为0,1,2,…,99.依编号顺序平均分成10个小组,组号依次为1,2,3,…,10。现用系统抽样方法抽取一个容量为10的样本,如果在第一组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同.若m=6,则在第7组中抽取的号码是()A.63 B.64C.65 D.66解析:选A若m=6,则在第7组中抽取的号码个位数字与13的个位数字相同,而第7组中的编号依次为60,61,62,63,…,69,故在第7组中抽取的号码是63。4.某企业三月中旬生产A,B,C三种产品共3000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:产品类别ABC产品数量(件)1300样本容量(件)130由于不小心,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 诉讼代理与庭审辩护工作总结
- 幼儿捉迷藏课程设计
- 英雄之旅课程设计理念
- 酒店行业销售工作总结
- IT行业员工薪酬福利制度优化
- 2025年高考历史一轮复习之世界多极化
- 如何将愿景转化为年度工作计划
- 2023-2024学年福建省福州市福清市高一(下)期中语文试卷
- 汉字偏旁部首名称大全表
- 文化行业市场拓展总结
- 草学类专业生涯发展展示
- 2024年广东省公务员录用考试《行测》真题及解析
- 辅导员年度述职报告
- 七年级历史试卷上册可打印
- 2024-2030年全球及中国洞察引擎行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 《东南亚经济与贸易》习题集、案例、答案、参考书目
- 烧烤店装修合同范文模板
- 2024年中国樱桃番茄种市场调查研究报告
- 数据分析基础与应用指南
- 吉林市2024-2025学年度高三第一次模拟测试 (一模)数学试卷(含答案解析)
- 自考《英语二》高等教育自学考试试题与参考答案(2024年)
评论
0/150
提交评论