列方程(组)解应用题_第1页
列方程(组)解应用题_第2页
列方程(组)解应用题_第3页
列方程(组)解应用题_第4页
列方程(组)解应用题_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE1列方程(组)解应用题1、列方程(组)解应用题的一般步骤:审→设→列→解→验→答.2、常见类型:★行程问题:路程=×.①相遇问题:全程=甲走的路程乙走的路程.②追及问题:被追路程=甲走的路程乙走的路程(甲追乙).③航行问题:顺水速度=静水速度水流速度;逆水速度=静水速度水流速度.★工程问题:工作效率=÷=甲的工作效率乙的工作效率.工作总量通常看作.★增长率问题:增长率=增长量基础量.模型:a(1+x)n=b.其中a为原来量,x为平均增长率,n为增长次数,b为增长后的量,“+”表示增长,“-”表示下降.★利率问题:本息和=+.利息=本金××.★利润问题:利润=-;利润率=÷.一元一次方程的应用基础练习:1.某班学生为希望工程共捐款131元,比每人平均2元还多35元,设这个班的学生有x人,根据题意列方程为_________________.2.的5倍比的2倍大12可列方程为.3.某商品标价为165元,若降价以九折出售(即优惠10%),仍可获利10%(相对于进货价),则该商品的进货价是.4.甲、乙二人投资合办一个企业,并协议按照投资额的比例分配所得利润,已知甲与乙投资额的比例为3:4,首年的利润为38500元,则甲、乙二人可获得利润分别为元和元.5.在农业生产上,需要用含盐16%的盐水来选种,现有含盐24%的盐水200千克,需要加水多少千克?解:设需要加水x千克根据题意,列方程为,解这个方程,得答:.例题讲解:例.为满足用水量不断增长的需求,昆明市最近新建甲、乙、丙三个水厂,这三个水厂的日供水量共计11.8万立方米,其中乙水厂的日供水量是甲水厂日供水量的3倍,丙水厂的日供水量比甲水厂日供水量的一半还多1万立方米.求这三个水厂的日供水量各是多少万立方米?解:设由题意得:解得:答:练习:1.某校一、二两班共有95人,体育锻炼的平均达标率(达到标准的百分率)是60%,如果一班达标率是40%,二班达标率是78%,求一、二两班的人数各是多少。2.甲步行上午6时从A地出发于下午5时到达B地,乙骑自行车上午10时从A地出发,于下午3时到达B地,问乙在什么时间追上甲的?提高题:某校校长暑期将带领该校市级“三好学生”去北京旅游,甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优待”,乙旅行社说:“包括校长在内全部按全票价的6折优惠(即按全票价的60%收费),若全票为240元(1)设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(建立表达式)(2)当学生数为多少时,两家旅行社的收费一样?(3)就学生数x讨论哪家旅行社更优惠?课后作业:1.某种商品的进货价每件为x元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折降价并让利40元销售,仍可获利10%(相对于进价),则x=元2.某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,设这种服装的成本价为每件元,则满足的方程是.3.如图,标有相同字母的物体的质量相同,若的质量为20克,当天平处于平衡状态时,的质量为克.4.如图,某商场正在热销2008年北京奥运会的纪念品,小华买了一盒福娃和一枚奥运徽章,已知一盒福娃的价格比一枚奥运徽章的价格贵120元,则一盒福娃价格是元.一共花了170元一共花了170元5.某市为了鼓励居民节约用水,对自来水用户按如下标准收费:若每月每户用水不起过12吨,按每吨a元收费;若超过12吨,则超过部分按每吨2a元收费,如果某居民五月份缴纳水费20a元,则该居民这个月实际用水_________吨。6.有一种足球是由32块黑白相间的牛皮缝制而成的,如图所示,黑皮可看做正五边形,白皮可看做正六边形,设白皮有x块,则黑皮有(32-x)块,每块白皮有六条边,共6x条边,因每块白皮有三条边和黑皮连在一起,故黑皮共有3x条边,要求白皮、黑皮的块数,列出的方程正确的是()A.3x=32-xB.3x=5(32-x)C.5x=3(32-x)D.6x=32-x7.下图是学校化学实验室用于放试管的木架,在每层长29cm的木条上钻有6个圆孔,每个圆孔的直径均为2.5cm.两端与圆孔边缘及任何相邻两孔边缘之间的距离都相等并设为Xcm,则x为()A.2B.2.15C.2.33D.2.368.某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价.设这种服装的成本价为元,则得到方程()A.B.C.D.9.某书城开展学生优惠售书活动,凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算。某学生第一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了34元钱,则该学生第二次购书实际付款元。10、中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%.某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息锐).设到期后银行应向储户支付现金元,则所列方程正确的是()A.B.C.D.12、足球比赛的记分规则为:胜一场得3分。平一场得1分,输一场得0分,一支足球队在某个赛季中共需比赛14场,现已比赛了8场,输了1场,得17分,请问:(1)前8场比赛中,这支球队共胜了多少场?(2)这支球队打满14场比赛,最高能得多少分?(3)通过对比赛情况的分析,这支球队打满14场比赛,得分不低于29分,就可以达到预期的目标,请你分析一下,在后面的6场比赛中,这支球队至少要胜几场,才能达到预期目标?13、如图是某风景区的旅游路线示意图,其中B、C、D为风景点,E为两条路的交叉点,图中数据为相应两点间的路程(单位:km)一学生从A处出发,以2km/h的速度步行游览,每个景点的逗留时间均为0.5h。(1)当他沿着路线A—D—C—E—A游览回到A处时,共用了3h,求CE的长;(2)若此学生打自从A处出发后,步行速度与在景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A外,请你为他设计一条步行路线,并说明这样设计的理由(不考虑其他因素)。14、今年5月12日,四川汶川发生了里氏8.0级大地震,给当地人民造成了巨大的损失.“一方有难,八方支援”,我市锦华中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:班级(1)班(2)班(3)班金额(元)2000吴老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元;信息二:(2)班的捐款金额比(3)班的捐款金额多300元;信息三:(1)班学生平均每人捐款的金额大于48元,小于51元.请根据以上信息,帮助吴老师解决下列问题:(1)求出(2)班与(3)班的捐款金额各是多少元;(2)求出(1)班的学生人数.15、苏州地处太湖之滨,有丰富的水产养殖资源,水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到如下信息:①每亩水面的年租金为500元,水面需按整数亩出租;②每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;③每公斤蟹苗的价格为75元,其饲养费用为525元,当年可获1400元收益;④每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益;(1)若租用水面亩,则年租金共需__________元;(2)水产养殖的成本包括水面年租金、苗种费用和饲养费用,求每亩水面蟹虾混合养殖的年利润(利润=收益-成本);(3)李大爷现在奖金25000元,他准备再向银行贷不超过25000元的款,用于蟹虾混合养殖.已知银行贷款的年利率为8%,试问李大爷应该租多少亩水面,并向银行贷款多少元,可使年利润超过35000元?二元一次方程组的应用基础练习:1.已知、互余,比大.则、的度数分别为.2.“鸡兔同笼”是我国民间流传的诗歌形式的数学题:“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔?”解决此问题,设鸡为只,兔为只,则所列方程组是.3.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元.捐款情况如下捐款(元)1234人数67表格中捐款2元和3元的人数不小心被墨水污染已看不清楚.若设捐款2元的有名同学,捐款3元的有名同学,根据题意,可得方程组.4.某城市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口将增加1%,则这个城市现有的城镇人口数与农村人口数分别为.5.《九章算术》是我国东汉初年编订的一部数学经典著作。在它的“方程”一章里,一次方程组是由算筹布置而成的。《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2所示,图中各行从左到右列出的算筹数分别表示未知数x、y的系数与相应的常数项。把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是类似地,图2所示的算筹图我们可以表述为()AB.C.D.例题讲解:例.根据北京奥运票务网站公布的女子双人3米跳板跳水决赛的门票价格(如表1),小明预定了B等级、C等级门票共7张,他发现这7张门票的费用恰好可以预订3张A等级门票.问小明预定了B等级、C等级门票各多少张?表1:表1:等级票价(元/张)A500B300C150练习:1.某工厂第一季度生产甲、乙两种机器共480台.改进生产技术后,计划第二季度生产这两种机器共554台,其中甲种机器产量要比第一季度增产10%,乙种机器产量要比第一季度增产20%.该厂第一季度生产甲、乙两种机器各多少台?2.永盛电子有限公司向工商银行申请了甲乙两种款,共计68万元,每年需付出利息8.42万元,甲种贷款每年的利率是12%,乙种贷款每年的利率是13%,求这两种贷款的数额各是多少?提高题:为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.若某户居民月份用水8m3,则应收水费:2×6+4×(8-6)=20元.(1)若该户居民月份用水12.5m3,则应收水费______元;(2)若该户居民、月份共用水15m3,(月份用水量超过月份),共交水费元,则该户居民,月份各用水多少立方米?价目表价目表每月水用量单价不超出6m3的部分2元/m3超出6m3不超出10m3的部分4元/m3超出10m3的部分8元/m3注:水费按月结算.]课后作业:1.某商店有两个进价不同的计算器都卖了64元,其中一个盈利60%,另一个亏本20%,在这项买卖中,这家商店()A.赔了8元B.赚了32元C.不赔不赚D.赚了8元2.为确保信息安全,信息需加密传输,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.己知某种加密规则为:明文、对应的密文为、.例如,明文1、2对应的密文是-1、4.当接收方收到密文是2、7时,解密得到的明文是()A.-1,1B.1,3C.3,1D.1,l3.为保护生态环境,我省某山区县响应国家“退耕还林”号召,将该县某地一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各为多少平方千米,设耕地面积为x平方千米,林地面积为y平方千米,据题意列出方程组.4.在某校举办的足球比赛中规定:胜一场得3分,平一场得1分,负一场得0分,某班足球队参加了12场比赛,共得22分,已知这个队只输了2场,那么此队胜几场?平几场?5.“5·12”(1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?6.某工厂第一季度生产甲、乙两种机器共480台.改进生产技术后,计划第二季度生产这两种机器共554台,其中甲种机器产量要比第一季度增产10%,乙种机器产量要比第一季度增产20%.该厂第一季度生产甲、乙两种机器各多少台?7.某山区有23名中、小学生因贫困失学需要捐助,资助一名中学生的学习费用需要a元,一名小学生的学习费用需要b元,某校学生积极捐款,初中各年级学生捐款数额与用其恰好捐助贫困中学生和小学生人数的部分情况如下表:初一年级初二年级初三年级捐款数额(元)400042007400捐助贫困学生(名)23捐助贫困小学生人数(名)43(1)求a、b的值;(2)初三年级学生的捐款解决了其余贫困中小学生的学习费用,请将初三年级学生可捐助的贫困中、小学生人数直接填入上表中。(不需写出计算过程)8.某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8∶20~12∶00,下午14∶00~16∶00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:生产甲产品件数(件)生产乙产品件数(件)所用总时间(分)10103503020850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分?(2)小王该月最多能得多少元?此时生产甲、乙两种产品分别多少件?9.夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施.某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度.求只将温度调高

10.某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.①求该同学看中的随身听和书包单价各是多少元?②某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?

分式方程的应用分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解是否是所列;(2)检验所求的解是否.基础练习:1.轮船顺水航行40千米所需的时间和逆水航行30千米所需的时间相同.已知水流速度为3千米/时,设轮船在静水中的速度为x千米/时,可列方程为_________.2.某商店运进120台空调准备销售,由于开展了促销活动,每天比原计划多售出4台,结果提前5天完成销售任务,则原计划每天销售台.3.某车间在规定时间内加工130个零件,加工了40个零件后,由于改进操作技术,每天比原来计划多加工10个零件,结果总共用5天完成任务。则原计划每天加工个零件.4.在昆明“世博会”期间,为方便游客参观,铁道部门临时加开了南宁至昆明的直达列车.已知南宁至昆明的路程为828km,普快列车与直快列车由昆明到南宁时,直快列车平均速度是普快的1.5倍,若直快列车比普快列车晚出发2h而先到4h,求两列车的平均速度分别是多少?设普快列车的速度为xKm/h,则直快列车的速度为1.5xkm/h.依题意,所列方程正确的是()例题讲解:例.在2008年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度.练习:1.今年以来受各种因素的影响,猪肉的市场价格仍在不断上升.据调查,今年5月份一级猪肉的价格是1月份猪肉价格的1.25倍.小英同学的妈妈同样用20元钱在5月份购得一级猪肉比在1月份购得的一级猪肉少0.4斤,那么今年1月份的一级猪肉每斤是多少元?2.一个水池有甲、乙两个进水管,单独开放甲管注满水池比单独开放乙管少用10小时。如果单独开放甲管10小时后,加入乙管,需要6小时可把水池注满。问单独开放一个水管,各需多少小时才能把水池注满?提高题:某公路上一路段的道路维修工程准备对外招标,现有甲、乙两个工程队竞标,竞标资料上显示:若由两队合做,6天可以完成,共需工程费用10200元;若单独完成此项工程,甲队比乙队少用5天.但甲队每天的工程费用比乙队多300元,工程指挥部决定从这两个队中选一个队单独完成此项工程,若从节省资金的角度考虑,应该选择哪个工程队?为什么?甲、乙两队完成某项工作,甲单独完成比乙单独完成快15天,如果甲单独先工作10天,再由乙单独工作15天,就可完成这项工作的eq\f(2,3),求甲、乙两人单独完成这项工作各需多少天?课后作业:1.“5·12”汶川大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.问原计划每天修多少米?某原计划每天修米,所列方程正确的是()A. B.C.D.2.A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运20千克,A型机器人搬运1000千克所用时间与B型机器人搬运800千克所用时间相等,则A、B两种机器人每小时分别搬运化工原料.3.小美开了一家服装店,有一次去批发市场进货,发现一款牛仔裤,预想能畅销,就用4000元购买了一个批发商的所有这种裤子,还想买二倍数量的这种牛仔裤,又到另一个批发商处用8800元购进,只是单价比前面购进的贵5元.回来后小美按每件89元销售,销路很好,最后剩下10件,按七五折销售,很快售完,则小美这笔生意盈利()A.8335元B.8337.5元C.8340元D.8342.5元4.甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的eq\f(4,5),求甲、乙两个施工队单独完成此项工程各需多少天?5.某河的水流速度为每小时2千米,A、B两地相距36千米,一动力橡皮船从A地出发,逆流而上去B地,出航后1小时,机器发生故障,橡皮船随水向下漂移,30分钟后机器修复,继续向B地开去,但船速比修复前每小时慢了1千米,到达B地比预定时间迟了54分钟,求橡皮船在静水中起初的速度.6.符号“”称为二阶行列式,规定它的运算法则为:,请你根据上述规定求出下列等式中x的值.7.某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元。(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?8.如图1-16-1小明家、王老师家、学校在同一条路上,小明家到王老师家的路程为3km,王老师家到学校的路程为0.5km,由于小明的父母战斗在抗“非典”第一线,为了使他能按照到校,王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20min,问王老师的步行速度及骑自行车速度各是多少?9.某中学库存960套旧桌凳,修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务.经协商后得知:甲小组单独修理这批桌凳比乙小组多用20天;乙小组每天比甲小组多修8套;学校每天需付甲小组修理费80元,付乙小组120元.(1)求甲、乙两个木工小组每天各修桌凳多少套.(2)在修理桌凳过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有以下三种修理方案供选择:①由甲单独修理;②由乙单独修理;③由甲、乙共同合作修理.你认为哪种方案既省时又省钱?试比较说明.10.汶川大地震发生以后,全国人民众志成城.首长到帐篷厂视察,布置赈灾生产任务,下面是首长与厂长的一段对话:首长:为了支援灾区人民,组织上要求你们完成12000顶帐篷的生产任务.厂长:为了尽快支援灾区人民,我们准备每天的生产量比原来多一半.首长:这样能提前几天完成任务?厂长:请首长放心!保证提前4天完成任务!根据两人对话,问该厂原来每天生产多少顶帐篷?11.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线起跑,绕过P点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?PP30米l一元二次方程的应用基础练习:1.某公司1996年出口创收135万美元,1997年、1998年每年都比上一年增加a%,那么,1998年这个公司出口创汇万美元2.某电视机厂1994年向国家上缴利税400万元,1996年增加到484万元,则该厂两年上缴的利税平均每年增长的百分率是.3.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图.如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是()A.x2+130x-1400=0B.x2+65-350=0C.x2-130x-1400=0D.x2-64x-1350=04.某地2005年外贸收入为2.5亿元,2007年外贸收入达到了4亿元,若平均每年的增长率为x,则可以列出方程为.例题讲解:例.要建一个面积为150m2的长方形养鸡场,为了节约材料,鸡场的一边靠着原有的一条墙,墙长为am,另三边用竹篱笆围成,如图,如果篱笆的长为35m,(1)求鸡场的长与宽各为多少?(2)题中墙的长度a对题目的解起着怎样的作用?练习:1.用22长的铁丝,折成一个面积是30㎝2的矩形,求这个矩形的长和宽.又问:能否折成面积是32㎝2的矩形呢?为什么?2.某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元,求3月份到5月份营业额的平均月增长率.3.小明将勤工俭学挣得的100元钱按一年期存入少儿银行,到期后取出50元用来购买学习用品,剩下的50元和应得的利息又全部按一年期存入。若存款的年利率保持不变,这样到期后可得本金和利息共66元,求这种存款的年利率。提高题:如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了多少元钱?1米1米1米课后作业:1.等腰两边的长分别是一元二次方程的两个解,则这个等腰三角形的周长是.2.当=时,关于的一元二次方程有两个相等的实数根,此时这两个实数根是.3.若方程kx2-6x+1=0有两个不相等的实数根,则k的取值范围是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论