




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第页共页八年级数学教案模板汇编9篇八年级数学教案模板汇编9篇八年级数学教案篇111.1与三角形有关的线段11.1.1三角形的边1.理解三角形的概念,认识三角形的顶点、边、角,会数三角形的个数.(重点)2.能利用三角形的三边关系判断三条线段能否构成三角形.(重点)3.三角形在实际生活中的应用.(难点)一、情境导入出示金字塔、战机、大桥等图片,让学生感受生活中的三角形,体会生活中处处有数学.老师利用多媒体演示三角形的形成过程,让学生观察.问:你能不能给三角形下一个完好的定义?二、合作探究探究点一:三角形的概念图中的锐角三角形有()A.2个B.3个C.4个D.5个解析:(1)以A为顶点的锐角三角形有△ABC、△ADC共2个;(2)以E为顶点的锐角三角形有△EDC共1个.所以图中锐角三角形的个数有2+1=3(个).应选B.方法总结:数三角形的个数,可以按照数线段条数的方法,假如一条线段上有n个点,那么就有n〔n-1〕2条线段,也可以与线段外的一点组成n〔n-1〕2个三角形.探究点二:三角形的三边关系【类型一】断定三条线段能否组成三角形以以下各组线段为边,能组成三角形的是()A.2c,3c,5cB.5c,6c,10cC.1c,1c,3cD.3c,4c,9c解析:选项A中2+3=5,不能组成三角形,故此选项错误;选项B中5+6>10,能组成三角形,故此选项正确;选项C中1+1<3,不能组成三角形,故此选项错误;选项D中3+4<9,不能组成三角形,故此选项错误.应选B.方法总结:断定三条线段能否组成三角形,只要断定两条较短的线段长度之和大于第三条线段的长度即可.【类型二】判断三角形边的取值范围一个三角形的三边长分别为4,7,x,那么x的取值范围是()A.3<x<11B.4<x<7C.-3<x<11D.x>3解析:∵三角形的三边长分别为4,7,x,∴7-4<x<7+4,即3<x<11.应选A.方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.有时还要结合不等式的知识进展解决.【类型三】等腰三角形的三边关系一个等腰三角形的两边长分别为4和9,求这个三角形的周长.解析:先根据等腰三角形两腰相等的性质可得出第三边长的两种情况,再根据两边和大于第三边来判断能否构成三角形,从而求解.解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能构成三角形,应舍去;4+9>9,故4,9,9能构成三角形,∴它的周长是4+9+9=22.方法总结:在求三角形的边长时,要注意利用三角形的三边关系验证所求出的边长能否组成三角形.【类型四】三角形三边关系与绝对值的综合解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来断定绝对值里的式子的正负,然后去绝对值符号进展计算即可.方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进展化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进展化简.三、板书设计三角形的边1.三角形的概念:由不在同一直线上的三条线段首尾顺次相接所组成的图形.2.三角形的三边关系:两边之和大于第三边,两边之差小于第三边.本节课让学生经历一个探究解决问题的过程,抓住“任意的三条线段能不能围成一个三角形”引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的能围成,有的不能围成,由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,重点研究“能围成三角形的三条边之间到底有什么关系”.通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论.这样教学符合学生的认知特点,既进步了学生学习的兴趣,又增强了学生的动手才能.八年级数学教案篇2一、回忆交流,合作学习【活动方略】活动设计:老师先将学生分成四人小组,交流各自的小结,并结合课本P87的小结进展反思,老师巡视,并且不断引导学生进入复习轨道.然后进展小组汇报,汇报时可借助投影仪,要求学生上台汇报,最后老师归纳.【问题探究1】〔投影显示〕飞机在空中程度飞行,某一时刻刚好飞到小明头顶正上方4000米处,过了20秒,飞机间隔小明头顶5000米,问:飞机飞行了多少千米?思路点拨:根据题意,可以先画出符合题意的图形,如右图,图中△ABC中的∠C=90°,AC=4000米,AB=5000米,要求出飞机这时飞行多少千米,就要知道飞机在20秒时间里飞行的路程,也就是图中的BC长,在这个问题中,斜边和一直角边是的,这样,我们可以根据勾股定理来计算出BC的长.〔3000千米〕【活动方略】老师活动:操作投影仪,引导学生解决问题,请两位学生上台演示,然后讲评.学生活动:独立完成“问题探究1”,然后踊跃举手,上台演示或与同伴交流.【问题探究2】〔投影显示〕一个零件的形状如右图,按规定这个零件中∠A与∠BDC都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,请你判断这个零件符合要求吗?为什么?思路点拨:要检验这个零件是否符合要求,只要判断△ADB和△DBA是否为直角三角形,这样可以通过勾股定理的逆定理予以解决:AB2+AD2=32+42=9+16=25=BD2,得∠A=90°,同理可得∠CDB=90°,因此,这个零件符合要求.【活动方略】老师活动:操作投影仪,关注学生的思维,请两位学生上讲台演示之后再评讲.学生活动:考虑后,完成“问题探究2”,小结方法.解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,∴△ABD为直角三角形,∠A=90°.在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.∴△BDC是直角三角形,∠CDB=90°因此这个零件符合要求.【问题探究3】甲、乙两位探险者在沙漠进展探险,某日早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙两人相距多远?思路点拨:要求甲、乙两人的间隔,就要确定甲、乙两人在平面的位置关系,由于甲往东、乙往北,所以甲所走的道路与乙所走的道路互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙两人的间隔.〔13千米〕【活动方略】老师活动:操作投影仪,巡视、关注学生训练,并请两位学生上讲台“板演”.学生活动:课堂练习,与同伴交流或举手争取上台演示八年级数学教案篇3一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为根底的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、2=得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后是通过4个例题介绍了利用根与系数的关系简化一些计算的知识。例如,求方程中的特定系数,求含有方程根的一些代数式的值等问题,由方程的根确定方程的系数的方法等等。根与系数的关系也称为韦达定理(韦达是法国数学家)。韦达定理是初中代数中的一个重要定理。这是因为通过韦达定理的学习,把一元二次方程的研究推向了高级阶段,运用韦达定理可以进一步研究数学中的许多问题,如二次三项式的因式分解,解二元二次方程组;韦达定理对后面函数的学习研究也是作用非凡。通过近些年的中考数学试卷的分析可以得出:韦达定理及其应用是各地市中考数学命题的热点之一。出现的题型有选择题、填空题和解答题,有的将其与三角函数、几何、二次函数等内容综合起来,形成难度系数较大的压轴题。通过韦达定理的教学,可以培养学生的创新意识、创新精神和综合分析数学问题的才能,也为学生今后学习方程理论打下根底。(二)重点、难点一元二次方程根与系数的关系是重点,让学生从详细方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个方程求作新方程,使新方程的根与的方程的根有某种关系,比拟抽象,学生真正掌握有一定的难度,是教学的难点。(三)教学目的1、知识目的:要求学生在理解的根底上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。八年级数学教案篇4知识构造:重点与难点分析:本节内容的重点是等腰三角形的断定定理.本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要根据,此定理为证明线段相等提供了又一种方法,这是本节的重点.推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论.本节内容的难点是性质与断定的区别。等腰三角形的性质定理和断定定理是互逆定理,题设与结论正好相反.学生在应用它们的时候,经常混淆,帮助学生认识断定与性质的区别,这是本节的难点.另外本节的文字表达题也是难点之一,和上节结合让学生逐步掌握解题的思路方法.由于知识点的增加,题目的复杂程度也进步,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用.教法建议:本节课教学方法主要是“以学生为主体的讨论探究法”。在数学教学中要防止过多告诉学生现成结论。提倡老师鼓励学生讨论解决问题的方法,引导他们探究数学的内在规律。详细说明如下:(1)参与探究发现,领略知识形成过程学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言.最后找一名学生用文字口述定理的内容。这样很自然就得到了等腰三角形的断定定理.这样让学生亲自动手理论,积极参与发现,满打满算了学生的认识冲突,使学生克制思维和探求的惰性,获得锻炼时机,对定理的产生过程,真正做到心领神会。(2)采用“类比”的学习方法,获取知识。由性质定理的学习,我们得到了几个推论,自然想到:根据等腰三角形的断定定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来。假如学生提到的不完好,老师可以做适当的点拨引导。(3)总结,形成知识构造为了使学生对本节课有一个完好的认识,便于今后的应用,老师提出如下问题,让学生考虑答复:(1)怎样断定一个三角形是等腰三角形?有哪些定理根据?(2)怎样断定一个三角形是等边三角形?一.教学目的:1.使学生掌握等腰三角形的断定定理及其推论;2.掌握等腰三角形断定定理的运用;3.通过例题的学习,进步学生的逻辑思维才能及分析问题解决问题的才能;4.通过自主学习的开展体验获取数学知识的感受;5.通过知识的纵横迁移感受数学的辩证特征.二.教学重点:等腰三角形的断定定理三.教学难点:性质与断定的区别四.教学用具:直尺,微机五.教学方法:以学生为主体的讨论探究法六.教学过程:1、新课背景知识复习(1)请同学们说出互逆命题和互逆定理的概念估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?启发学生用自己的语言表达上述结论,老师稍加整理后给出标准表达:1.等腰三角形的断定定理:假如一个三角形有两个角相等,那么这两个角所对的边也相等.(简称“等角对等边”).由学生说出、求证,使学生进一步熟悉文字转化为数学语言的方法.:如图,△ABC中,∠B=∠C.求证:AB=AC.老师可引导学生分析:联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.注意:(1)要弄清断定定理的条件和结论,不要与性质定理混淆.(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未断定它是一个等腰三角形.(3)断定定理得到的结论是三角形是等腰三角形,性质定理是三角形是等腰三角形,得到边边和角角关系.2.推论1:三个角都相等的三角形是等边三角形.推论2:有一个角等于60°的等腰三角形是等边三角形.要让学生自己推证这两条推论.小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形断定定理.证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.3.应用举例例1.求证:假如三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.分析:让学生画图,写出求证,启发学生遇到中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和.要证AB=AC,可先证明∠B=∠C,因为∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系.:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.求证:AB=AC.证明:(略)由学生板演即可.补充例题:(投影展示)1.:如图,AB=AD,∠B=∠D.求证:CB=CD.分析:解详细问题时要突出边角转换环节,要证CB=CD,需构造一个以CB、CD为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.证明:连结BD,在中,()(等边对等角)()即(等教对等边)小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系.2.,在中,的平分线与的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF.分析:对于三个线段间关系,尽量转化为等量关系,由于此题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论.证明:DE//BC(),BE=DE,同理DF=CF.EF=DE-DFEF=BE-CF小结:(1)等腰三角形断定定理及推论.(2)等腰三角形和等边三角形的证法.七.练习教材P.75中1、2、3.八.作业教材P.83中1.1)、2)、3);2、3、4、5.九.板书设计八年级数学教案篇5一、教学目的1.理解一个数平方根和算术平方根的意义;2.理解根号的意义,会用根号表示一个数的平方根和算术平方根;3.通过本节的训练,进步学生的逻辑思维才能;4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探究数学奥秘的兴趣。二、教学重点和难点教学重点:平方根和算术平方根的概念及求法。教学难点:平方根与算术平方根联络与区别。三、教学方法讲练结合四、教学手段幻灯片五、教学过程〔一〕提问1、一正方形面积为50平方米,那么它的边长应为多少?2、一个数的平方等于1000,那么这个数是多少?3、一只容积为0。125立方米的正方体容器,它的棱长应为多少?这些问题的共同特点是:乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的。下面作一个小练习:填空1、〔〕2=9;2、〔〕2=0、25;3、5、〔〕2=0、0081学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。由练习引出平方根的概念。〔二〕平方根概念假如一个数的平方等于a,那么这个数就叫做a的平方根〔二次方根〕。用数学语言表达即为:假设x2=a,那么x叫做a的平方根。由练习知:±3是9的平方根;±0.5是0。25的平方根;0的平方根是0;±0.09是0。0081的平方根。由此我们看到+3与—3均为9的平方根,0的平方根是0,下面看这样一道题,填空:〔〕2=—4学生考虑后,得到结论此题无答案。反问学生为什么?因为正数、0、负数的平方为非负数。由此我们可以得到结论,负数是没有平方根的。下面总结一下平方根的性质〔可由学生总结,老师整理〕。〔三〕平方根性质1.一个正数有两个平方根,它们互为相反数。2.0有一个平方根,它是0本身。3.负数没有平方根。〔四〕开平方求一个数a的平方根的运算,叫做开平方的运算。由练习我们看到+3与—3的平方是9,9的平方根是+3和—3,可见平方运算与开平方运算互为逆运算。根据这种关系,我们可以通过平方运算来求一个数的平方根。与其他运算法那么不同之处在于只能对非负数进展运算,而且正数的运算结果是两个。〔五〕平方根的表示方法一个正数a的正的平方根,用符号“”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“—”表示,a的平方根合起来记作,其中读作“二次根号”,读作“二次根号下a”。根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“”读作“正、负根号a”。练习:1.用正确的符号表示以下各数的平方根:①26②247③0。2④3⑤解:①26的平方根是②247的平方根是③0。2的平方根是④3的平方根是⑤的平方根是由学生说出上式的读法。例1。以下各数的平方根:〔1〕81;〔2〕;〔3〕;〔4〕0。49解:〔1〕∵〔±9〕2=81,∴81的平方根为±9。即:〔2〕的平方根是,即〔3〕的平方根是,即〔4〕∵〔±0。7〕2=0。49,∴0。49的平方根为±0。7。小结:让学生熟悉平方根的概念,掌握一个正数的平方根有两个。六、总结本节课主要学习了平方根的概念、性质,以及表示方法,回去后要仔细阅读教科书,稳固所学知识。七、作业教材P。127练习1、2、3、4。八、板书设计平方根〔一〕概念〔四〕表示方法例1〔二〕性质〔三〕开平方探究活动求平方根近似值的一种方法求一个正数的平方根的近似值,通常是查表。这里研究一种笔算求法。例1。求的值。解∵92102,两边平方并整理得∵x1为纯小数。18x1≈16,解得x1≈0。9,便可依次得到准确度为0。01,0。001,……的近似值,如:两边平方,舍去x2得19.8x2≈—1.01八年级数学教案篇6一、学生起点分析通过前一章《勾股定理》的学习,学生已经明白什么是勾股数,但也发现并不是所有的直角三角形的边长都是勾股数,甚至有些直角三角形的边长连有理数都不是,例如:①腰长为1的等腰直角三角形的底边长不是有理数,②两条直角边分别为1,2的直角三角形的斜边长不是有理数,这为引入“新数”奠定了必要性.二、教学任务分析《数不够用了》是义务教育课程标准北师大版实验教科书八年级〔上〕第二章《实数》的第一节.本节内容安排了2个课时完成,第1课时让学生感受无理数的存在,初步建立无理数的印象,结合勾股定理知识,会根据要求画线段;第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.本课是第1课时,学生将在详细的实例中,通过操作、估算、分析等活动,感受无理数的客观存在性和引入的必要性,并能判断一个数是不是有理数.本节课的教学目的是:①通过拼图活动,让学生感受客观世界中无理数的存在;②能判断三角形的某边长是否为无理数;③学生亲自动手做拼图活动,培养学生的动手才能和探究精神;④能正确地进展判断某些数是否为有理数,加深对有理数和无理数的理解;三、教学过程设计本节课设计了6个教学环节:第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与稳固;第五环节:课堂小结;第六环节:作业布置.第一环节:质疑内容:【想一想】⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?目的:作必要的知识回忆,为第二环节埋下伏笔,便于后续问题的说理.效果:为后续环节的进展起了很好的铺垫的作用第二环节:课题引入内容:1.【算一算】一个直角三角形的两条直角边长分别为1和2,算一算斜边长的平方,并提出问题:是整数〔或分数〕吗?2.【剪剪拼拼】把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?目的:选取客观存在的“无理数“实例,让学生深入感受“数不够用了”.效果:巧设问题背景,顺利引入本节课题.第三环节:获取新知内容:【议一议】→【释一释】→【忆一忆】→【找一找】【议一议】:,请问:①可能是整数吗?②可能是分数吗?【释一释】:释1.满足的为什么不是整数?释2.满足的为什么不是分数?【忆一忆】:让学生回忆“有理数”概念,既然不是整数也不是分数,那么一定不是有理数,这说明:有理数不够用了,为“新数”〔无理数〕的学习奠定了根底【找一找】:在以下正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段目的:创设从感性到理性的认知过程,让学生充分感受“新数”〔无理数〕的存在,从而激发学习新知的兴趣效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.第四环节:应用与稳固内容:【画一画1】→【画一画2】→【仿一仿】→【赛一赛】【画一画1】:在右1的正方形网格中,画出两条线段:1.长度是有理数的线段2.长度不是有理数的线段【画一画2】:在右2的正方形网格中画出四个三角形〔右1〕2.三边长都是有理数2.只有两边长是有理数3.只有一边长是有理数4.三边长都不是有理数【仿一仿】:例:在数轴上表示满足的`解:〔右2〕仿:在数轴上表示满足的【赛一赛】:右3是由五个单位正方形组成的纸片,请你把它剪成三块,然后拼成一个正方形,你会吗?试试看!〔右3〕目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上效果:加深了对“新知”的理解,稳固了本课所学知识.第五环节:课堂小结内容:1.通过本课学习,感受有理数又不够用了,请问你有什么收获与体会?2.客观世界中,确实存在不是有理数的数,你能列举几个吗?3.除了本课所认识的非有理数的数以外,你还能找到吗?目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.效果:学生总结、互相补充,学会进展概括总结.第六环节:布置作业习题2.1六、教学设计反思〔一〕生活是数学的泉,兴趣是学习的动力大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓重兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中老师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经历呈现出来,然后进展大胆置疑,生活中的数并不都是有理数,那它们终究是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的气氛.在教学中,不要盲目的抢时间,让学生可以充分的考虑与操作.〔二〕化抽象为详细常言道:“数学是锻炼思维的体操”,数学老师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进展解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.〔三〕强化知识间联络,注意纠错既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.八年级数学教案篇7第一步:情景创设乒乓球的标准直径为40mm,质检部门从A、B两厂消费的乒乓球中各抽取了10只,对这些乒乓球的直径了进展检测。结果如下〔单位:mm〕:A厂:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;B厂:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.你认为哪厂消费的乒乓球的直径与标准的误差更小呢?〔1〕请你算一算它们的平均数和极差。〔2〕是否由此就断定两厂消费的乒乓球直径同样标准?今天我们一起来探究这个问题。探究活动通过计算发现极差只能反映一组数据中两个极值之间的大小情况,而对其他数据的波动情况不敏感。让我们一起来做以下的数学活动算一算把所有差相加,把所有差取绝对值相加,把这些差的平方相加。想一想你认为哪种方法更能明显反映数据的波动情况?第二步:讲授新知:〔一〕方差定义:设有n个数据,各数据与它们的平均数的差的平方分别是,…,我们用它们的平均数,即用来衡量这组数据的波动大小,并把它叫做这组数据的方差〔variance〕,记作。意义:用来衡量一批数据的波动大小在样本容量一样的情况下,方差越大,说明数据的波动越大,越不稳定归纳:〔1〕研究离散程度可用〔2〕方差应用更广泛衡量一组数据的波动大小〔3〕方差主要应用在平均数相等或接近时〔4〕方差大波动大,方差小波动小,一般选波动小的方差的简便公式:推导:以3个数为例〔二〕标准差:方差的算术平方根,即④并把它叫做这组数据的标准差.它也是一个用来衡量一组数据的波动大小的重要的量.注意:波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是可以反映一组数据的波动大小的一个统计量,老师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。八年级数学教案篇8一、教学目的〔一〕、知识与技能:〔1〕使学生理解因式分解的意义,理解因式分解的概念。〔2〕认识因式分解与整式乘法的互相关系——互逆关系,并能运用这种关系寻求因式分解的方法。〔二〕、过程与方法:〔1〕由学生自主探究解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察才能,进一步开展学生的类比思想。〔2〕由整式乘法的逆运算过渡到因式分解,开展学生的逆向思维才能。〔3〕通过对分解因式与整式的乘法的观察与比拟,培养学生的分析问题才能与综合应用才能。〔三〕、情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。二、教学重点和难点重点:因式分解的概念及提公因式法。难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联络。三、教学过程教学环节:活动1:复习引入看谁算得快:用简便方法计算:〔1〕7/9×13-7/9×6+7/9×2=;〔2〕-2.67×132+25×2.67+7×2.67=;〔3〕992–1=。设计意图:假如说学生对因式分解还相当生疏的话,相信学生对用简便方法进展计算应该相当熟悉.引入这一步的目的旨在让学生通过回忆用简便方法计算——因数分解这一特殊算法,使学生通过类比很自然地过渡到正确理解因式分解的概念上,从而为因式分解的掌握扫清障碍,本环节设计的计算992–1的值是为了降低下一环节的难度,为下一环节的理解搭一个台阶.考前须知:学生对于〔1〕〔2〕两小题逆向利用乘法的分配律进展运算的方法是很熟悉,对于第〔3〕小题的逆向利用平方差公式的运算那么有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式。活动2:导入课题P165的探究〔略〕;2.看谁想得快:993–99能被哪些数整除?你是怎么得出来的?设计意图:引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备。活动3:探究新知看谁算得准:计算以下式子:〔1〕3x(x-1)=;〔2〕(a+b+c)=;〔3〕〔+4〕(-4)=;〔4〕〔-3〕2=;〔5〕a(a+1)(a-1)=;根据上面的算式填空:〔1〕a+b+c=;〔2〕3x2-3x=;〔3〕2-16=;〔4〕a3-a=;〔5〕2-6+9=。在第一组的整式乘法的计算上,学生通过对第一组式子的观察得出第二组式子的结果,然后通过对这两组式子的结果的比拟,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,开展学生的逆向思维才能。活动4:归纳、得出新知比拟以下两种运算的联络与区别:a(a+1)(a-1)=a3-aa3-a=a(a+1)(a-1)在第三环节的运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?八年级数学教案篇9教学目的1、知识与技能目的学会观察图形,勇于探究图形间的关系,培养学生的空间观念.2、过程与方法(1)经历一般规律的探究过程,开展学生的抽象思维才能.(2)在将实际问题抽象成几何图形过程中,进步分析问题、解决问题的才能及浸透数学建模的思想.3、情感态度与价值观(1)通过有趣的问题进步学习数学的兴趣.(2)在解决实际问题的过程中,体验数学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 鱼塘股份合同协议书
- 食堂搭伙合同协议书
- 兄弟俩出资买房协议书
- 酒店优惠预订协议书
- 分手后房产归属协议书
- 钢筋清包合同协议书
- 餐厅临时员工协议书
- 集体拆迁补偿协议书
- 餐饮员工就餐协议书
- 出租车退车合同协议书
- 浙江省宁波市镇海中学2025届高三下学期5月模拟语文试题(含答案)
- 2025年广东省汕尾市九年级数学中考二模试卷(含部分答案)
- 【沪科版】七年级数学下册第六章单元测试卷(一)含答案与解析
- 2025年(第一季度)电网工程设备材料信息参考价(加密)
- 广东省广州市2025届高三二模数学试卷(原卷版)
- 济南幼儿师范高等专科学校招聘笔试真题2024
- 2025全国保密教育线上培训考试试题库及答案
- 戒毒医疗常识考试试题及答案
- 院感感染培训试题及答案
- 生产经营单位事故隐患内部报告奖励制度
- 2025-2030年中国科技馆产业发展模式分析及投资规划研究报告
评论
0/150
提交评论