广义多维云模型及在空间聚类中的应用-以广东湛江市为例-英文-_第1页
广义多维云模型及在空间聚类中的应用-以广东湛江市为例-英文-_第2页
广义多维云模型及在空间聚类中的应用-以广东湛江市为例-英文-_第3页
广义多维云模型及在空间聚类中的应用-以广东湛江市为例-英文-_第4页
广义多维云模型及在空间聚类中的应用-以广东湛江市为例-英文-_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

J.Geogr.Sci.2010,20(5):787-798

DOI:007/s11442-010-0811-8

©2010

ScienceChinaPress

Springer-Verlag

Generalmultidimensionalcloudmodelandits

applicationonspatialclusteringinZhanjiang,Guangdong

DENGYu1,4,*LIUShenghe1,ZHANGWenting2,WANGLi3,4,WANGJianghao1,4

1.InstituteofGeographicSciencesandNaturalResourcesResearch,CAS,Beijing100101,China;

2.SchoolofResourcesandEnvironmentScience,WuhanUniversity,Wuhan430079,China;

3.InstituteofPolicyandManagement,CAS,Beijing100080,China;

4.GraduateUniversityofChineseAcademyofSciences,Beijing100049,China

Abstract:Traditionalspatialclusteringmethodshavethedisadvantageof“hardwaredivision”,

andcannotdescribethephysicalcharacteristicsofspatialentityeffectively.Inviewoftheabove,thispapersetsforthageneralmulti-dimensionalcloudmodel,whichdescribesthecharacteristicsofspatialobjectsmorereasonablyaccordingtotheideaofnon-homogeneousandnon-symmetry.Basedoninfrastructures’classificationanddemarcationinZhanjiang,adetailedinterpretationofclusteringresultsismadefromthespatialdistributionofmembershipdegreeofclustering,thecomparativestudyofFuzzyC-meansandacoupledanalysisofresidentiallandprices.Generalmulti-dimensionalcloudmodelreflectstheintegratedchar-acteristicsofspatialobjectsbetter,revealsthespatialdistributionofpotentialinformation,andrealizesspatialdivisionmoreaccuratelyincomplexcircumstances.However,duetothecomplexityofspatialinteractionsbetweengeographicalentities,thegenerationofcloudmodelisaspecificandchallengingtask.

Keywords:multi-dimensionalcloud;spatialclustering;datamining;membershipdegree;Zhanjiang

1

Introduction

Withtherapiddevelopmentofmodernscienceandtechnology,thecapacityofaccessing

datahasbeengreatlyimproved.However,thecomplexityofmassivedataandthetimelinessofdataprocessinghaspreventedtheeffectiveuseofdata,wegetintoacontradictionin“richdata,meagerknowledge”(Liu,2007).Inordertosearchformorevaluableknowledge,DataMiningandKnowledgeDiscoveryemerges,whichhasbecomethefocusofinterna-tionalresearchandapplications(Macqueen,1967).Spatialclusteringisoneoftheimportantmethodsappliedtospatialdataminingandknowledgediscovery.Therearemanymethodsofspatialclusteringincludingpartitioningmethod(KaufmanandRousseeuw,1990),hier-

Received:2010-02-06Accepted:2010-04-16

Foundation:NationalNaturalScienceFoundationofChina,No.40971102;KnowledgeInnovationProjectoftheChineseAcademyofSciences,No.KZCX2-YW-322;SpecialGrantforPostgraduates’ScientificInnovationandSo-cialPracticein2008

Author:DengYu(1985–),Ph.DCandidate,specializedinurbandevelopmentandlanduse.E-mail:

HYPERLINKmailto:rain00788@163

rain00788@163

*Correspondingauthor:LiuShenghe,Professor,E-mail:

HYPERLINKmailto:liush@igsnrr.ac

liush@igsnrr.

scichina

springeom

archymethod(Berkhin,2000;Zhangetal.,1996;KarypicandHan1999),methodbasedon

network(Wangetal.,1997;Sheikholeslamietal.,1998),andmethodbasedondensity(Es-teretal.,1996;Ankerstetal.,1999).Traditionalmethodsofspatialclusteringcannotover-comethedefectofhardwaredivisioneffectively,aswellasareasonableexpressionofdy-namicchange.Therefore,itisparticularlyurgenttolookfornewmethodsofspatialcluster-ing.

Thecloudmodel,whichwasintroducedtoChinabyLiDeyi,isaqualitativeandquanti-tativeuncertaintyconversionmodelwhichwasbuiltonthebasisoftraditionalfuzzysettheory,probabilityandstatistics.Itorganicallycombinesfuzzinessandrandomnessofun-certainconceptandrealizestheconversionbetweenuncertainlanguagevalueandquantita-tivevalue(Lietal.,1995).Subsequently,LiDeyidiscussedtheuniversalnatureofnormalcloudmodelandbroadenedthescopeofitsapplications(LiandLiu,2004).Inordertoraisetheawarenessofcloudmodelanditsapplicationlevel,LiuChangyuanalyzedthestatisticalsignificanceandparameterscharacteristicsofthenormalcloudmodel(Liu,2005).Onthisbasis,thecloudmodeliswidelyusedinspatialgeneralizedknowledgeandassociationrulesmining,foundedknowledgeexpression,continuousdatadiscretization,spatialdatabaseun-certaintyqueryandinference,remotesensingimageinterpretationandidentification(Lietal.,1997;Lietal.,1998;Dietal.,1999;Liuetal.,2004).Astheapplicationdeepens,cloudtheorysystemisincreasinglymature,suchascloudmodel,virtualcloud,cloudcomputing,cloudtransform,uncertaintyreasoningandsoon(LiandLiu,2004;Li,2000).Moreover,theoreticalresearchhasinstructivesignificanceonpracticalapplications.

Cloudmodelwakenednewinterestintheapplicationofclusteringbecauseitappliesfuzzinessandrandomnessofclouddropstoretaintheuncertaintymembershipofspatialinformation.Itcanovercomemanyproblemssuchasavoidingthedefectofhardwaredivi-sioneffectively,aswellasexpressingtheprocessofdynamicchangeofspatialobjectsrea-sonably(Tang,1986;Chen,1998;Houetal.,2008),andreallyimplement“softdivision”,whichtraditionalspatialclusteringmethodscannotachieve.QinKun(2006)appliedcloudmodelinimageclassificationandclustering,whichwasthefirstattemptofpracticalappli-cation(Qin,2006).Wangclassifiedthespatialobjectsuccessfullyusingcloudmodel(Wang,

2007a).Wangdidclusteringresearchonthespatialobjectafter“potentialtransform”(Wang,

2007b),whichmadesomeprogressaswell.However,allofthemdidnotfullyreflectthemulti-dimensionalcharacteristicsofspatialdata.Thesemethodswhichachievethepurposeofdimensionalityreductiononlyrelyingondataintegrationstillhavemanydefects,whileweightingascertainmentistoosubjective.Moreover,theerrorproducedbynormalatomiccloudfittingcannotbecontrolledeffectivelywhentheleafnodesinpanconcepttreegener-ates,andthismethodcannotexpressthecomplexityofthecharacteristicsofspatialobjectsaccurately.

Inviewoftheabove,thispapersetsforthageneralmulti-dimensionalcloudmodel,thismodeldescribesthecharacteristicsofspatialobjectsmorereasonablyaccordingtotheideaofnon-homogeneousandnon-symmetry,thereforethenewmethodismoreaccordanttopractice.Onthisbasis,thispaperanalyzesthespaceobjectwithclustersbyapplyinggeneralmulti-dimensionalcloudmodel.Themethodavoidedtheissueofindexweightascertain-ment(LiandZheng,2004;Zhangetal.,2004),anditsclusteringresultsembodiedtheinte-gratedcharacteristicsofspaceobjects,reflectedthespatialdistributionofthepotentialin-

DENGYuetal.:GeneralmultidimensionalcloudmodelanditsapplicationonspatialclusteringinZhanjiang

789

formation,andrealizedspatialdivisionmoreaccuratelyincomplexcircumstances.There-

fore,generalmultidimensionalcloudmodelcanbewidelyappliedtotheresearchonspatialdataminingandknowledgediscovery.

2 Cloudmodelandgeneralmultidimensionalcloudmodel

Cloudmodel

Cloudmodeltakesexpectationvalue(Ex),entropy(En)andsuper-entropy(He)asatoken

ofqualitativeconcept.Itcombinesfuzzinessandrandomnesstogetherduringqualitativetransform.Exreflectsthecloudcenteroftheclouddrops.Enrevealsthefuzzinessofthe

rangeofconceptnumerical.ThevalueofHereflects

DigitalcharacteristicsofcloudareshownasFigure1.

the

discretedegreeof

cloud

drops.

Figure1 Digitalcharacteristicsofcloud

Ithasbeendemonstratedthatatomiccloudisuniversallyadaptable(LiandLiu,2004).

However,incomplexrealworld,thishomogeneityandsymmetryaredifficulttomeet.Inordertoportraytheobjectivethingsmoreaccurately,generalmultidimensionalcloudmodelemerged.Figure2isacomparisondiagramofastandardone-dimensionalandageneralmultidimensionalcloudmodel.

Figure2 Comparisondiagramsof1Dnormalcloudandgeneralcloud

Generalmultidimensionalcloudmodel

Generalcloudovercomestheshortcomingsofunreasonablespatialdivision,ithasseveral

non-equilibriumandnon-symmetricforms;ontheotherhand,theheterogeneouscharacter-isticsofgeneralmulti-dimensionalcloudmodelhasgreatsuperiorityinsimulatingcomplexphenomena.Forexample,thedelimitationofinfluenceradiusofbusinessservicecenterusuallyspreadalongthetrafficroute,orspreadtoresidentialareasinacertaindirectionun-symmetrical.Inordertodealwithsuchproblemseffectively,thepresentationofgeneralcloudmodelseemsparticularlyimportant.

Whennecessary,usingtherelativepositiontothe“cloudcores”todescribethedirectionrange,andselectingappropriatenormalcloudfunctioncanmeettherequirementsofcom-plexsituations.Generalcloudmodelissubstantiallypiecewise,anditsbasicformulaisshowninFigure3(takingtwo-dimensionalcloudmodelasanexample):

1⎡(x1−Ex1)2(x2−Ex2)2⎤

+

⎥⎦

(En11)2 (En21)2

2⎢⎣

⎪e

x1<Ex1andx2>Ex2

µi=⎨

(1)

1⎡(x1−Ex1)2(x2−Ex2)2⎤

⎪−

+

⎥⎦others

2⎢⎣(En12)2

(En22)2

⎪e

whereµiisdegreeofmembership,xiisabscissavalueofrandomdot,andx2isordinate

valueofrandomdot.(Ex1,Ex2)isexpectationpairoftwo-dimensionalcloudmodel.(En11,

En21)isentropypairofonedirection,and(En12,En22)isentropypairoftheotherdirection.

Figure3 Comparisondiagramof2Dnormalcloudandgeneralcloud

3

Studyofclusteringbasedongeneralmultidimensionalcloudmodel

Thebasicideainspatialclusteringmethodbasedongeneralmultidimensionalcloudmodel

isasfollows:Firstofall,determinereasonablemultidimensionalcloudmodelparametersaccordingtotheradiationrangeandattributedimensionaswellasrelatedcharacteristicsofaspatialobject,andthengenerateatomicclouds,thatis,leafnodeinpan-concept-tree.Secondly,raisethelowerconceptualfinenesstoahigherlevelaccordingtosyntheticopera-torofamultidimensionalcloudmodel.Stopthisstepwhenthenumberofconceptsequalstothenumberofclassificationgrades.Finally,getthemembershipdegreeofeachspatialob-jectsfromahigher-levelconcept.Theconceptwiththehighestmembershipdegreetoanobjectistherelatedconceptofthatobject.

DENGYuetal.:GeneralmultidimensionalcloudmodelanditsapplicationonspatialclusteringinZhanjiang

791

Generationofatomiccloud

Spatialobjectsarerepresentedbyconcept,whileatomiccloudisthesmallestconceptparti-

cle.Thesingleobjectcanbeconsideredasatomiccloud,andthushowtodeterminetherelevantparametersisespeciallyimportantaccordingtothecomplexityandcomprehen-sivenessofspatialobjects.

Expectationvalue(Ex)reflectsthehorizontallocationoftheatomiccloud,areflectionoftheconceptof“core”.Themembershipdegreeofthelocationwhereexpectationstandsis1,anditdecreasesgraduallywiththedistance.Entropy(En)hasanexplicitgeographicmean-ing,itisametricofspatialradiationrangeaccordingtotheattributevalueofspatialobjects.

⎧1

Rmax−Rmin

Ai≠Amin

Ai=Amin

⋅(Ai−Amin)⋅

Eni=⎨3

⎪⎩b

Amax−Amin

(2)

whereAistheattributevalueofspatialobject,Amin,Amaxaretheminimumandmaximumof

attributevalues;Rmin,Rmaxaretheminimumandmaximumofradiationdistance;bisaun-

determinedconstant;constant isobtainedbytheformulaen=1R.

1

3

3

Basedonthenon-homogeneousandnon-symmetryattributesofspatialobjects,entropyalsohaspiecewisefeatures,thatis,anisotropy.Thusweshouldintroduceacorrectionα,

whichcandepictthecomplexgeographicphenomenonmoreaccurately.Theexpressionisasfollows:

⎧Eni

En=⎨

(3)

⎩(1+α)⋅Eni

Thenormalcloudisanormaldistributedcloudwhosedeviationdegreefromthenormal

distributionismeasuredbysuperentropyHe.IfHe=0,cloudmodeldegenerateintoordi-narynormaldistribution.Inordertoshowthedynamicchangesofradiationrange,andcon-trolthefuzzydegreeof“BothThisandThat”characteristic,thesettingofHeisveryimpor-tant.Takeallfactorsintoconsideration,thesettingofHeis0.1(Qinetal.,2006).

Afterparametersetting,theatomiccloud--thegenerationofleafnodesofpanconcepttreeterminated.Thismethodtakesconsiderationofboththeaccurateexpressionofcentralcon-ceptandthecharacteristicsofedgedynamicchanges.

Climbingofuniversalconceptualnumber--Cloudcomputing

Atomiccloudisraisedfromextendedmultidimensionalcloudmodeltoahigherlevelcon-

ceptualfinenessgraduallybycomprehensiveoperations.Theconceptualtreebuiltbycloudmodelhaspropertyofuncertainty,andtheboundarybetweenconceptsisvague.Conceptfinenessinlowerlevelcanclimbtoahighleveltogeneratetheneededleafnodesinpanconcepttree.Thenumberoftypesdecidesthenumberofrootnodes.Piecewiseandmulti-formationcharacteristicofatomiccloudhaveraisedahigherdemandforcloudopera-tion.Superpositionofdifferentatomiccloudscanbetreatedflexibly,andatomiccloudsinthesamemembershipintervalaredescribedasfollows:

C(Ex1,Ex2,En1,En2,He1,He2),

A2(Ex21,Ex22,En21,En22,He21,He22),...,

Am(Exm1,Exm2,Enm1,Enm2,Hem1,Hem2)

Applying“Soft-Or”method,cloudsyntheticalgorithmcanbeamelioratedsentedasfollows(Jiangetal.,2000):

and

repre-

WhenthedistancebetweenA1andA2istheminimum,thatisDmin=A1,A2

Ex1=(Ex11+Ex21)/2+(En21−En11)/4;Ex2=(Ex12+Ex22)/2+(En22−En12)/4;En1=(Ex21−Ex11)/4+(En11+En21)/2;En2=(Ex22−Ex12)/4+(En12+En22)/2;

He1=max(He11,He21);

He2=max(He12,He22);

:

(4)

(5)(6)(7)(8)

(9)

Conceptpromotingistogetthedifferencebetweenconceptfinenessinthesamelevel,the

mostcommonofwhichisEuclideandistance,andtocombinetheconceptwithminimalex-pectationdifference.Usingmulti-dimensionalcloudsyntheticoperatormentionedabove,thelevelofnodesinpan-concept-treecanberaisedstagebystage.Itisworthemphasizingthatweshouldemploytheunionofdifferentscope,whenfacingconceptsinthesamelevelwithdifferentdirection.

3.3

Determiningclass--X-conditiongenerators

Whenthenumberoffatherconceptualcloudsinthehighestlevelreachesthenumberof

classificationcategories,pan-concept-treebasedoncloudmodelhasbeenbuilt,andthecloudsynthesisfinishes.Then,themembershipdegreeofeachorderedsettoitsrelevantconceptinahigherlevelisgainedonthebasisofanX-conditionnormalcloudmodel.Amongallclasses,theonewiththehighestmembershipdegreeisdefinedasthemember-shipanalysisresultofitsrelevantobject.Thespecificalgorithmcanbedescribedinthefol-lowingsteps:

Step1:Estimatethepositionalmembershipbetween(x1,x2)and(Ex1,Ex2),findoutthecorrespondingcloudfunction

Step2:Computeformula(P1i,P2i)=R1(Ex1,Ex2,En1,En2),andget(P1i,P2i)asarandom

numberundernormaldistributionwithEnasitsexpectationvalueandHeasitsstandardiza-tiondifference.

1⎡(x1−Ex1)2(x2−Ex2)2⎤

+

⎥⎦

(P1i)2 (P2i)2

2⎢⎣

Step3:Computeformulaµi=e

(10)

Step4:ComputeMaxµi,andtheobjectthatisbeingstudiedfallsintotherelevantClassi.

4

ApplicationonacasestudyinZhanjiang

AccordingtotheGeneralMultidimensionalCloudModelanditsbasicideasintheSpatial

ClusteringResearch,thispaperusestheclusteringofhighschoolsinZhanjiangcityasastudycase.ZhanjiangliesinthewestofGuangdongProvince,whichisoneofthefirstbatchofopencoastalcities.Owingtoitspredominantgeologicallocation,Zhanjianghashadarapiddevelopmentofsocietyandeconomy.Theauthorhasparticipatedinthemultiple-indexlandpriceevaluationofZhanjiangandmasteredthebasicdataandserviceconditionsof

DENGYuetal.:GeneralmultidimensionalcloudmodelanditsapplicationonspatialclusteringinZhanjiang

793

variousinfrastructuresincludinghighschools.Therefore,therelatedmeasurementresults

andspatialmodificationinformationinthebaselandvalueevaluationreportofZhanjiangcanbeusedtoascertaintheconceptionalparameterofthegeneralcloudmodel.Furthermore,comparativeanalysisoftheclusteringresultsandresidentialstandardlandpricedistributionmapcanbeusedtofurtherembodythevalueandadvantageofgeneralcloudmodel.Dividetheresearchareainto120×120gridsandeachofthegridsis250×250m2.Figure4showsthedistributionmapofthegeneralcloudmodeldefinedbythebasicdataofthehighschools

intheresearcharea.

Wecantentativelydividespatialpatternofhighschools’servicezoneintofourareas.Theneveryschoolmaybelongtoacertainzoneaccordingtotheclassification.Figure5showstheclusteringresultsoperatedbythecloudsyntheticoperator,andthenumberoftheclassescanbedifferentwithdifferentsituations.WecanseefromFigure5thattheresultoftheclusteringcloudisobviouslyanisotropic,andthedivisionofthespatialclassescanbereflectedbythespatialcoveragerangeoftheclasses.Itisnoteworthythatnoneofthespatialentitiestotallybelongtoacertainclass,thatistosay,thedivisionoftheclassesis“Both

ThisandThat”.However,eachentityhasthemaximummembershipdegreeaccording

itself.

to

Figure4

Distributionofcloudmodel

Figure5

Resultsofclassification

JustaswhatFigure6shows,therearefourclusterdistrictsofmembershipdegreeinspace,

themaximummembershipdegreeisoclinesattenuatefromthecentertotheperipheralarea

ofeachclass.Duetothecorrectionofthecalculationofhighschools’serviceradius,the

membershipdegreechangessharplyinthedirectionofnorthwest,whileattenuatingsmoothlyinotherdirections.Thisresultsinthenoncontinuousdistributionofthemember-shipdegreeinthedirectionofnorthandwest.Wecanclassifythesehighschoolsaccordingtothemaximummembershipdegreeprinciple,andfinishthespatialclusteringwork.

Figure6

Regionalisolinedistributionofthelargestmembership

Furtherinvestigatethemembershipbetweenmembershipdegreeandspatialpositionofeachtypeofobjects,asshowninFigure7,thereisagoodcorrelationbetweenthem:The

correlationcoefficientswithdifferentzonesare:1(west,F=167,sig=0.00),7(south,F=39,sig=0.00),0.98(north,F=26,sig=0.01),and0.99(east,F=2800,sig=0.00).Westzoneincludes17objects,andthemaximumcoveringdistanceis9807m.ComparedwiththemarkofthespatialobjectinFigure6,objectsa1,a2anda3inwestzonearefarawayfromthecenter,whichisresultedfromtheextensionoftheserviceradiusinthedirectionofsoutheast.Southzoneincludes22objects,themostdistantobjectb1whichclassisnotinthedirectionofnorthwest,inthecontrary,thecloserobjectb2isinthisarea,andthusmembershipdegreeofb2issmaller.Northzoneandeastzonehavefewerobjects,thusthefittingresultsaremoresatisfactory.

Figure8revealsthefundamentalsimilarinformationfromtheaspectoffittingerror.Insouthzone,themaximalerrorisupto62%becauseoftheexistenceofb2,whichisthere-flectionoftheanisotropyofspatialobjects’radiation.Overall,membershipdegreeofobjectsdecreaseswiththeincreaseofthedistancetotheclasscenter.Thespatialinfluenceamongobjectscausestheunbalanceddecreaseofthemembershipdegree,whichreflectstheactualsituationmorerationally.

DENGYuetal.:GeneralmultidimensionalcloudmodelanditsapplicationonspatialclusteringinZhanjiang

795

Figure7 Changingtrendsofmembershipofdifferenttypes

Figure8 Residualofmembershipofdifferenttypes

Inordertorepresenttheadvantagesofclusteringmethodbasedongeneralmultidimen-

sionalcloud,hereweanalyzetheclusteringresultsandFCMcomparatively.FCMisaclus-teringalgorithmwhichdeterminesthesubjectiondegreetoacertainclassaccordingtomembershipdegree.Membershipfunctiondescribesthesharinglevelofmodelsbetweenfuzzyclasses.FCMwasputforwardinordertoabsorbtheadvantagesoftraditionalC-meansclustering,suchasitsconvergentspeed,insensitivitytoinitializationandabilitytoshowthesimilarinformationamongsamples.Thefuzzypartitionmatrix(U)isnotonlypartlyexplicitbutalsomaintainsthefuzzinessofsamples’spatialdistributiontherebyin-creasestheaccuracyofclassification(Bezdek,1981).TheclusteringresultbasedonFCMisshowninFigure9.Comparedwiththemethodinthispaper,a1,a2,a3andb1areallclassi-fiedasnorthzone.AlthoughFCMcanensurethesmallestdifferencesamongclasses,itstillcouldnotconsidereffectcharacteristicsofallthespatialobjectsinacomplexgeographicworld.Therefore,FCMishardtomeettherequirementsofscientificclassificationundertheconstraintsofcomprehensivefactors.

Figure9 ClusteringresultsoffuzzyC-means

Figure10showsthedistri-

butionofresidentialaffectingfactorsvalueofZhanjiangcity.Theassessmentcoverageof

the

notthe

spatialdistributiondoes

completelycoincidewith

city

boundaries.Conse-

quently,

havean

clustering

classes

obviousaggregation

withthefourextremeareasof

landvaluedistributions.65%ofspatialobjectsarelocatedintheregionsofhighlandprices,only8%isdistributedinre-gionsoflowlandprices.Thehigherthelandpricesoftheregion,themoreintensivethedistributionofthespatialob-jects.Theregionswithasmallmembershipdegreeoftenhave

Figure10

Relationshipofhousepriceandclusteringresultsin2008

DENGYuetal.:GeneralmultidimensionalcloudmodelanditsapplicationonspatialclusteringinZhanjiang

797

alowlandpriceseither,especiallyinthepricelowlandbetweenclasses,justasthespatial

objecta1,a2,a3andb1inFigure6,whichreflectthefiercecompetitionforspaceobjectsbetweenclasscenters.Thepricelowlandsrevealthecharacteristicsofweaklyabsolutecon-trollingforceofalltheclassesoverobjects,andtheclusteringresultismostlyinfluencedbytheseregions.

5 Conclusionsanddiscussion

(1)Cloudmodelhasdualcharacteristicsoffuzzynessandrandomness,anditshowsgreatsuperiorityintheexpressionofconceptualfineness.One-dimensionalcloudmodelcannotaccuratelyreflectmulti-attributecharacteristicsofthereal-world,andessentialinformationofspatialobjectswaslostduringtheprocedureofsimpledatafusion.Standardtwo-dimensionalcloudmodelovercomessomeshortcomingsofone-dimensionalcloud,butitstillcannotmeettheneedsofsimulatingthenon-homogeneousandnon-symmetrychar-acteristicsofcomplexgeographicalphenomena.Thispaperputsforwardageneralmulti-dimensionalcloudmodel,andtheproblemsabovewereresolvedeffectivelyandfac-tually.

(2)Basedonthedemonstrativestudy,adetailedinterpretationofclusteringresultsismadefromtheintegratedperspectiveofthespatialdistributionofmembershipdegreeofspatialclustering,andthecomparativestudyofFCMandacoupledanalysisofresidentiallandprices.Generalmulti-dimensionalcloudmodelcouldreflecttheintegratedcharacteris-ticsofspatialobjectsbetter,whilethespatialclusteringresultscanrevealthepotentialin-formationofspatialdistribution,andrealizespatialdivisionmoreaccuratelyincomplexcircumstances.

(3)Thepracticalvalueofgeneralmulti-dimensionalcloudmodelinspatialclusteringisnotable.However,parametersetting,theaccuracyanduncertaintyofthemodelareprob-lemstobeovercome.Thecharacteristicofthemodelisthatalltheparametershaveappro-priategeographicalmeanings.Thismakesthedescriptionofgeographicalphenomenamorereasonable.Duetothecomplexityofspatialinteractionsamonggeographicalentities,thegenerationofacloudmodelisstillaspecificandchallengingtask.

References

AnkerstM,BreunigMM,KriegelHPetal.,1999.OPTICS:Orderingpointstoidentifytheclusteringstructure.

In:Proc.ACMSIGMOD’99Int.Conf.onManagementofData,PhiladephiaPA,1999.BerkhinP,2000.Surveyofclusteringdataminingtechniques.AccrueSoftware.

BezdekJC,1981.PatternRecognitionwithFuzzyObjectiveFunctionAlgorithms.NewYork:PlenumPress.

ChenHuilin,1998.Afuzzycomprehensiveanalysisoftheresource-environmentconsciousnessofthepeoplein

MashanregionofGuizhouProvince.ScientiaGeographicaSinica,18(4):379–386.(inChinese)

DiKaichang,LiDeyi,LiDeren,1999.Cloudtheoryanditsapplicationsinspatialdataminingandknowledgediscovery.JournalofImageandGraphics,11(4):930–935.(inChinese)

EsterM,KriegelHP,SanderJetal.,1996.Adensity-basedalgorithmfordiscoveringclustersinlargespatialdatabases.In:Proc.1996Int.Conf.KnowledgeDiscoveryandDataMining(KDD’96),1996:226–331.

HouYingzi,ChenXiaoling,WangFangxiong,2008.FuzzycomprehensiveevaluationofwaterenvironmentvaluebasedonGIS.ScientiaGeographicaSinica,28(1):90–95.(inChinese)

JiangRong,FanJianhua,LiDeyi,2000.Automaticgenerationofpan-concept-treeonnumericaldata.Chinese

JournalofComputers,23(5):470–476.(inChinese)

KarypicG.,HanEH,1999.CHAMELEON:Ahierarchicalclusteringalgorithmusingdynamicmodeling.Com-puter,32:68–75.

KaufmanL,RousseeuwPJ,1990.Findinggroupsindata:Anintroductiontoclusteranalysis.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论