




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
J.Geogr.Sci.2010,20(5):787-798
DOI:007/s11442-010-0811-8
©2010
ScienceChinaPress
Springer-Verlag
Generalmultidimensionalcloudmodelandits
applicationonspatialclusteringinZhanjiang,Guangdong
DENGYu1,4,*LIUShenghe1,ZHANGWenting2,WANGLi3,4,WANGJianghao1,4
1.InstituteofGeographicSciencesandNaturalResourcesResearch,CAS,Beijing100101,China;
2.SchoolofResourcesandEnvironmentScience,WuhanUniversity,Wuhan430079,China;
3.InstituteofPolicyandManagement,CAS,Beijing100080,China;
4.GraduateUniversityofChineseAcademyofSciences,Beijing100049,China
Abstract:Traditionalspatialclusteringmethodshavethedisadvantageof“hardwaredivision”,
andcannotdescribethephysicalcharacteristicsofspatialentityeffectively.Inviewoftheabove,thispapersetsforthageneralmulti-dimensionalcloudmodel,whichdescribesthecharacteristicsofspatialobjectsmorereasonablyaccordingtotheideaofnon-homogeneousandnon-symmetry.Basedoninfrastructures’classificationanddemarcationinZhanjiang,adetailedinterpretationofclusteringresultsismadefromthespatialdistributionofmembershipdegreeofclustering,thecomparativestudyofFuzzyC-meansandacoupledanalysisofresidentiallandprices.Generalmulti-dimensionalcloudmodelreflectstheintegratedchar-acteristicsofspatialobjectsbetter,revealsthespatialdistributionofpotentialinformation,andrealizesspatialdivisionmoreaccuratelyincomplexcircumstances.However,duetothecomplexityofspatialinteractionsbetweengeographicalentities,thegenerationofcloudmodelisaspecificandchallengingtask.
Keywords:multi-dimensionalcloud;spatialclustering;datamining;membershipdegree;Zhanjiang
1
Introduction
Withtherapiddevelopmentofmodernscienceandtechnology,thecapacityofaccessing
datahasbeengreatlyimproved.However,thecomplexityofmassivedataandthetimelinessofdataprocessinghaspreventedtheeffectiveuseofdata,wegetintoacontradictionin“richdata,meagerknowledge”(Liu,2007).Inordertosearchformorevaluableknowledge,DataMiningandKnowledgeDiscoveryemerges,whichhasbecomethefocusofinterna-tionalresearchandapplications(Macqueen,1967).Spatialclusteringisoneoftheimportantmethodsappliedtospatialdataminingandknowledgediscovery.Therearemanymethodsofspatialclusteringincludingpartitioningmethod(KaufmanandRousseeuw,1990),hier-
Received:2010-02-06Accepted:2010-04-16
Foundation:NationalNaturalScienceFoundationofChina,No.40971102;KnowledgeInnovationProjectoftheChineseAcademyofSciences,No.KZCX2-YW-322;SpecialGrantforPostgraduates’ScientificInnovationandSo-cialPracticein2008
Author:DengYu(1985–),Ph.DCandidate,specializedinurbandevelopmentandlanduse.E-mail:
HYPERLINKmailto:rain00788@163
rain00788@163
*Correspondingauthor:LiuShenghe,Professor,E-mail:
HYPERLINKmailto:liush@igsnrr.ac
liush@igsnrr.
scichina
springeom
archymethod(Berkhin,2000;Zhangetal.,1996;KarypicandHan1999),methodbasedon
network(Wangetal.,1997;Sheikholeslamietal.,1998),andmethodbasedondensity(Es-teretal.,1996;Ankerstetal.,1999).Traditionalmethodsofspatialclusteringcannotover-comethedefectofhardwaredivisioneffectively,aswellasareasonableexpressionofdy-namicchange.Therefore,itisparticularlyurgenttolookfornewmethodsofspatialcluster-ing.
Thecloudmodel,whichwasintroducedtoChinabyLiDeyi,isaqualitativeandquanti-tativeuncertaintyconversionmodelwhichwasbuiltonthebasisoftraditionalfuzzysettheory,probabilityandstatistics.Itorganicallycombinesfuzzinessandrandomnessofun-certainconceptandrealizestheconversionbetweenuncertainlanguagevalueandquantita-tivevalue(Lietal.,1995).Subsequently,LiDeyidiscussedtheuniversalnatureofnormalcloudmodelandbroadenedthescopeofitsapplications(LiandLiu,2004).Inordertoraisetheawarenessofcloudmodelanditsapplicationlevel,LiuChangyuanalyzedthestatisticalsignificanceandparameterscharacteristicsofthenormalcloudmodel(Liu,2005).Onthisbasis,thecloudmodeliswidelyusedinspatialgeneralizedknowledgeandassociationrulesmining,foundedknowledgeexpression,continuousdatadiscretization,spatialdatabaseun-certaintyqueryandinference,remotesensingimageinterpretationandidentification(Lietal.,1997;Lietal.,1998;Dietal.,1999;Liuetal.,2004).Astheapplicationdeepens,cloudtheorysystemisincreasinglymature,suchascloudmodel,virtualcloud,cloudcomputing,cloudtransform,uncertaintyreasoningandsoon(LiandLiu,2004;Li,2000).Moreover,theoreticalresearchhasinstructivesignificanceonpracticalapplications.
Cloudmodelwakenednewinterestintheapplicationofclusteringbecauseitappliesfuzzinessandrandomnessofclouddropstoretaintheuncertaintymembershipofspatialinformation.Itcanovercomemanyproblemssuchasavoidingthedefectofhardwaredivi-sioneffectively,aswellasexpressingtheprocessofdynamicchangeofspatialobjectsrea-sonably(Tang,1986;Chen,1998;Houetal.,2008),andreallyimplement“softdivision”,whichtraditionalspatialclusteringmethodscannotachieve.QinKun(2006)appliedcloudmodelinimageclassificationandclustering,whichwasthefirstattemptofpracticalappli-cation(Qin,2006).Wangclassifiedthespatialobjectsuccessfullyusingcloudmodel(Wang,
2007a).Wangdidclusteringresearchonthespatialobjectafter“potentialtransform”(Wang,
2007b),whichmadesomeprogressaswell.However,allofthemdidnotfullyreflectthemulti-dimensionalcharacteristicsofspatialdata.Thesemethodswhichachievethepurposeofdimensionalityreductiononlyrelyingondataintegrationstillhavemanydefects,whileweightingascertainmentistoosubjective.Moreover,theerrorproducedbynormalatomiccloudfittingcannotbecontrolledeffectivelywhentheleafnodesinpanconcepttreegener-ates,andthismethodcannotexpressthecomplexityofthecharacteristicsofspatialobjectsaccurately.
Inviewoftheabove,thispapersetsforthageneralmulti-dimensionalcloudmodel,thismodeldescribesthecharacteristicsofspatialobjectsmorereasonablyaccordingtotheideaofnon-homogeneousandnon-symmetry,thereforethenewmethodismoreaccordanttopractice.Onthisbasis,thispaperanalyzesthespaceobjectwithclustersbyapplyinggeneralmulti-dimensionalcloudmodel.Themethodavoidedtheissueofindexweightascertain-ment(LiandZheng,2004;Zhangetal.,2004),anditsclusteringresultsembodiedtheinte-gratedcharacteristicsofspaceobjects,reflectedthespatialdistributionofthepotentialin-
DENGYuetal.:GeneralmultidimensionalcloudmodelanditsapplicationonspatialclusteringinZhanjiang
789
formation,andrealizedspatialdivisionmoreaccuratelyincomplexcircumstances.There-
fore,generalmultidimensionalcloudmodelcanbewidelyappliedtotheresearchonspatialdataminingandknowledgediscovery.
2 Cloudmodelandgeneralmultidimensionalcloudmodel
Cloudmodel
Cloudmodeltakesexpectationvalue(Ex),entropy(En)andsuper-entropy(He)asatoken
ofqualitativeconcept.Itcombinesfuzzinessandrandomnesstogetherduringqualitativetransform.Exreflectsthecloudcenteroftheclouddrops.Enrevealsthefuzzinessofthe
rangeofconceptnumerical.ThevalueofHereflects
DigitalcharacteristicsofcloudareshownasFigure1.
the
discretedegreeof
cloud
drops.
Figure1 Digitalcharacteristicsofcloud
Ithasbeendemonstratedthatatomiccloudisuniversallyadaptable(LiandLiu,2004).
However,incomplexrealworld,thishomogeneityandsymmetryaredifficulttomeet.Inordertoportraytheobjectivethingsmoreaccurately,generalmultidimensionalcloudmodelemerged.Figure2isacomparisondiagramofastandardone-dimensionalandageneralmultidimensionalcloudmodel.
Figure2 Comparisondiagramsof1Dnormalcloudandgeneralcloud
Generalmultidimensionalcloudmodel
Generalcloudovercomestheshortcomingsofunreasonablespatialdivision,ithasseveral
non-equilibriumandnon-symmetricforms;ontheotherhand,theheterogeneouscharacter-isticsofgeneralmulti-dimensionalcloudmodelhasgreatsuperiorityinsimulatingcomplexphenomena.Forexample,thedelimitationofinfluenceradiusofbusinessservicecenterusuallyspreadalongthetrafficroute,orspreadtoresidentialareasinacertaindirectionun-symmetrical.Inordertodealwithsuchproblemseffectively,thepresentationofgeneralcloudmodelseemsparticularlyimportant.
Whennecessary,usingtherelativepositiontothe“cloudcores”todescribethedirectionrange,andselectingappropriatenormalcloudfunctioncanmeettherequirementsofcom-plexsituations.Generalcloudmodelissubstantiallypiecewise,anditsbasicformulaisshowninFigure3(takingtwo-dimensionalcloudmodelasanexample):
⎧
1⎡(x1−Ex1)2(x2−Ex2)2⎤
−
+
⎢
⎥
⎥⎦
⎪
(En11)2 (En21)2
2⎢⎣
⎪e
x1<Ex1andx2>Ex2
µi=⎨
(1)
1⎡(x1−Ex1)2(x2−Ex2)2⎤
⎪−
+
⎢
⎥
⎥⎦others
2⎢⎣(En12)2
(En22)2
⎪e
⎩
whereµiisdegreeofmembership,xiisabscissavalueofrandomdot,andx2isordinate
valueofrandomdot.(Ex1,Ex2)isexpectationpairoftwo-dimensionalcloudmodel.(En11,
En21)isentropypairofonedirection,and(En12,En22)isentropypairoftheotherdirection.
Figure3 Comparisondiagramof2Dnormalcloudandgeneralcloud
3
Studyofclusteringbasedongeneralmultidimensionalcloudmodel
Thebasicideainspatialclusteringmethodbasedongeneralmultidimensionalcloudmodel
isasfollows:Firstofall,determinereasonablemultidimensionalcloudmodelparametersaccordingtotheradiationrangeandattributedimensionaswellasrelatedcharacteristicsofaspatialobject,andthengenerateatomicclouds,thatis,leafnodeinpan-concept-tree.Secondly,raisethelowerconceptualfinenesstoahigherlevelaccordingtosyntheticopera-torofamultidimensionalcloudmodel.Stopthisstepwhenthenumberofconceptsequalstothenumberofclassificationgrades.Finally,getthemembershipdegreeofeachspatialob-jectsfromahigher-levelconcept.Theconceptwiththehighestmembershipdegreetoanobjectistherelatedconceptofthatobject.
DENGYuetal.:GeneralmultidimensionalcloudmodelanditsapplicationonspatialclusteringinZhanjiang
791
Generationofatomiccloud
Spatialobjectsarerepresentedbyconcept,whileatomiccloudisthesmallestconceptparti-
cle.Thesingleobjectcanbeconsideredasatomiccloud,andthushowtodeterminetherelevantparametersisespeciallyimportantaccordingtothecomplexityandcomprehen-sivenessofspatialobjects.
Expectationvalue(Ex)reflectsthehorizontallocationoftheatomiccloud,areflectionoftheconceptof“core”.Themembershipdegreeofthelocationwhereexpectationstandsis1,anditdecreasesgraduallywiththedistance.Entropy(En)hasanexplicitgeographicmean-ing,itisametricofspatialradiationrangeaccordingtotheattributevalueofspatialobjects.
⎧1
Rmax−Rmin
Ai≠Amin
Ai=Amin
⋅(Ai−Amin)⋅
⎪
Eni=⎨3
⎪⎩b
Amax−Amin
(2)
whereAistheattributevalueofspatialobject,Amin,Amaxaretheminimumandmaximumof
attributevalues;Rmin,Rmaxaretheminimumandmaximumofradiationdistance;bisaun-
determinedconstant;constant isobtainedbytheformulaen=1R.
1
3
3
Basedonthenon-homogeneousandnon-symmetryattributesofspatialobjects,entropyalsohaspiecewisefeatures,thatis,anisotropy.Thusweshouldintroduceacorrectionα,
whichcandepictthecomplexgeographicphenomenonmoreaccurately.Theexpressionisasfollows:
⎧Eni
En=⎨
(3)
⎩(1+α)⋅Eni
Thenormalcloudisanormaldistributedcloudwhosedeviationdegreefromthenormal
distributionismeasuredbysuperentropyHe.IfHe=0,cloudmodeldegenerateintoordi-narynormaldistribution.Inordertoshowthedynamicchangesofradiationrange,andcon-trolthefuzzydegreeof“BothThisandThat”characteristic,thesettingofHeisveryimpor-tant.Takeallfactorsintoconsideration,thesettingofHeis0.1(Qinetal.,2006).
Afterparametersetting,theatomiccloud--thegenerationofleafnodesofpanconcepttreeterminated.Thismethodtakesconsiderationofboththeaccurateexpressionofcentralcon-ceptandthecharacteristicsofedgedynamicchanges.
Climbingofuniversalconceptualnumber--Cloudcomputing
Atomiccloudisraisedfromextendedmultidimensionalcloudmodeltoahigherlevelcon-
ceptualfinenessgraduallybycomprehensiveoperations.Theconceptualtreebuiltbycloudmodelhaspropertyofuncertainty,andtheboundarybetweenconceptsisvague.Conceptfinenessinlowerlevelcanclimbtoahighleveltogeneratetheneededleafnodesinpanconcepttree.Thenumberoftypesdecidesthenumberofrootnodes.Piecewiseandmulti-formationcharacteristicofatomiccloudhaveraisedahigherdemandforcloudopera-tion.Superpositionofdifferentatomiccloudscanbetreatedflexibly,andatomiccloudsinthesamemembershipintervalaredescribedasfollows:
C(Ex1,Ex2,En1,En2,He1,He2),
A2(Ex21,Ex22,En21,En22,He21,He22),...,
Am(Exm1,Exm2,Enm1,Enm2,Hem1,Hem2)
Applying“Soft-Or”method,cloudsyntheticalgorithmcanbeamelioratedsentedasfollows(Jiangetal.,2000):
and
repre-
WhenthedistancebetweenA1andA2istheminimum,thatisDmin=A1,A2
Ex1=(Ex11+Ex21)/2+(En21−En11)/4;Ex2=(Ex12+Ex22)/2+(En22−En12)/4;En1=(Ex21−Ex11)/4+(En11+En21)/2;En2=(Ex22−Ex12)/4+(En12+En22)/2;
He1=max(He11,He21);
He2=max(He12,He22);
:
(4)
(5)(6)(7)(8)
(9)
Conceptpromotingistogetthedifferencebetweenconceptfinenessinthesamelevel,the
mostcommonofwhichisEuclideandistance,andtocombinetheconceptwithminimalex-pectationdifference.Usingmulti-dimensionalcloudsyntheticoperatormentionedabove,thelevelofnodesinpan-concept-treecanberaisedstagebystage.Itisworthemphasizingthatweshouldemploytheunionofdifferentscope,whenfacingconceptsinthesamelevelwithdifferentdirection.
3.3
Determiningclass--X-conditiongenerators
Whenthenumberoffatherconceptualcloudsinthehighestlevelreachesthenumberof
classificationcategories,pan-concept-treebasedoncloudmodelhasbeenbuilt,andthecloudsynthesisfinishes.Then,themembershipdegreeofeachorderedsettoitsrelevantconceptinahigherlevelisgainedonthebasisofanX-conditionnormalcloudmodel.Amongallclasses,theonewiththehighestmembershipdegreeisdefinedasthemember-shipanalysisresultofitsrelevantobject.Thespecificalgorithmcanbedescribedinthefol-lowingsteps:
Step1:Estimatethepositionalmembershipbetween(x1,x2)and(Ex1,Ex2),findoutthecorrespondingcloudfunction
Step2:Computeformula(P1i,P2i)=R1(Ex1,Ex2,En1,En2),andget(P1i,P2i)asarandom
numberundernormaldistributionwithEnasitsexpectationvalueandHeasitsstandardiza-tiondifference.
1⎡(x1−Ex1)2(x2−Ex2)2⎤
−
+
⎢
⎥
⎥⎦
(P1i)2 (P2i)2
2⎢⎣
Step3:Computeformulaµi=e
(10)
Step4:ComputeMaxµi,andtheobjectthatisbeingstudiedfallsintotherelevantClassi.
4
ApplicationonacasestudyinZhanjiang
AccordingtotheGeneralMultidimensionalCloudModelanditsbasicideasintheSpatial
ClusteringResearch,thispaperusestheclusteringofhighschoolsinZhanjiangcityasastudycase.ZhanjiangliesinthewestofGuangdongProvince,whichisoneofthefirstbatchofopencoastalcities.Owingtoitspredominantgeologicallocation,Zhanjianghashadarapiddevelopmentofsocietyandeconomy.Theauthorhasparticipatedinthemultiple-indexlandpriceevaluationofZhanjiangandmasteredthebasicdataandserviceconditionsof
DENGYuetal.:GeneralmultidimensionalcloudmodelanditsapplicationonspatialclusteringinZhanjiang
793
variousinfrastructuresincludinghighschools.Therefore,therelatedmeasurementresults
andspatialmodificationinformationinthebaselandvalueevaluationreportofZhanjiangcanbeusedtoascertaintheconceptionalparameterofthegeneralcloudmodel.Furthermore,comparativeanalysisoftheclusteringresultsandresidentialstandardlandpricedistributionmapcanbeusedtofurtherembodythevalueandadvantageofgeneralcloudmodel.Dividetheresearchareainto120×120gridsandeachofthegridsis250×250m2.Figure4showsthedistributionmapofthegeneralcloudmodeldefinedbythebasicdataofthehighschools
intheresearcharea.
Wecantentativelydividespatialpatternofhighschools’servicezoneintofourareas.Theneveryschoolmaybelongtoacertainzoneaccordingtotheclassification.Figure5showstheclusteringresultsoperatedbythecloudsyntheticoperator,andthenumberoftheclassescanbedifferentwithdifferentsituations.WecanseefromFigure5thattheresultoftheclusteringcloudisobviouslyanisotropic,andthedivisionofthespatialclassescanbereflectedbythespatialcoveragerangeoftheclasses.Itisnoteworthythatnoneofthespatialentitiestotallybelongtoacertainclass,thatistosay,thedivisionoftheclassesis“Both
ThisandThat”.However,eachentityhasthemaximummembershipdegreeaccording
itself.
to
Figure4
Distributionofcloudmodel
Figure5
Resultsofclassification
JustaswhatFigure6shows,therearefourclusterdistrictsofmembershipdegreeinspace,
themaximummembershipdegreeisoclinesattenuatefromthecentertotheperipheralarea
ofeachclass.Duetothecorrectionofthecalculationofhighschools’serviceradius,the
membershipdegreechangessharplyinthedirectionofnorthwest,whileattenuatingsmoothlyinotherdirections.Thisresultsinthenoncontinuousdistributionofthemember-shipdegreeinthedirectionofnorthandwest.Wecanclassifythesehighschoolsaccordingtothemaximummembershipdegreeprinciple,andfinishthespatialclusteringwork.
Figure6
Regionalisolinedistributionofthelargestmembership
Furtherinvestigatethemembershipbetweenmembershipdegreeandspatialpositionofeachtypeofobjects,asshowninFigure7,thereisagoodcorrelationbetweenthem:The
correlationcoefficientswithdifferentzonesare:1(west,F=167,sig=0.00),7(south,F=39,sig=0.00),0.98(north,F=26,sig=0.01),and0.99(east,F=2800,sig=0.00).Westzoneincludes17objects,andthemaximumcoveringdistanceis9807m.ComparedwiththemarkofthespatialobjectinFigure6,objectsa1,a2anda3inwestzonearefarawayfromthecenter,whichisresultedfromtheextensionoftheserviceradiusinthedirectionofsoutheast.Southzoneincludes22objects,themostdistantobjectb1whichclassisnotinthedirectionofnorthwest,inthecontrary,thecloserobjectb2isinthisarea,andthusmembershipdegreeofb2issmaller.Northzoneandeastzonehavefewerobjects,thusthefittingresultsaremoresatisfactory.
Figure8revealsthefundamentalsimilarinformationfromtheaspectoffittingerror.Insouthzone,themaximalerrorisupto62%becauseoftheexistenceofb2,whichisthere-flectionoftheanisotropyofspatialobjects’radiation.Overall,membershipdegreeofobjectsdecreaseswiththeincreaseofthedistancetotheclasscenter.Thespatialinfluenceamongobjectscausestheunbalanceddecreaseofthemembershipdegree,whichreflectstheactualsituationmorerationally.
DENGYuetal.:GeneralmultidimensionalcloudmodelanditsapplicationonspatialclusteringinZhanjiang
795
Figure7 Changingtrendsofmembershipofdifferenttypes
Figure8 Residualofmembershipofdifferenttypes
Inordertorepresenttheadvantagesofclusteringmethodbasedongeneralmultidimen-
sionalcloud,hereweanalyzetheclusteringresultsandFCMcomparatively.FCMisaclus-teringalgorithmwhichdeterminesthesubjectiondegreetoacertainclassaccordingtomembershipdegree.Membershipfunctiondescribesthesharinglevelofmodelsbetweenfuzzyclasses.FCMwasputforwardinordertoabsorbtheadvantagesoftraditionalC-meansclustering,suchasitsconvergentspeed,insensitivitytoinitializationandabilitytoshowthesimilarinformationamongsamples.Thefuzzypartitionmatrix(U)isnotonlypartlyexplicitbutalsomaintainsthefuzzinessofsamples’spatialdistributiontherebyin-creasestheaccuracyofclassification(Bezdek,1981).TheclusteringresultbasedonFCMisshowninFigure9.Comparedwiththemethodinthispaper,a1,a2,a3andb1areallclassi-fiedasnorthzone.AlthoughFCMcanensurethesmallestdifferencesamongclasses,itstillcouldnotconsidereffectcharacteristicsofallthespatialobjectsinacomplexgeographicworld.Therefore,FCMishardtomeettherequirementsofscientificclassificationundertheconstraintsofcomprehensivefactors.
Figure9 ClusteringresultsoffuzzyC-means
Figure10showsthedistri-
butionofresidentialaffectingfactorsvalueofZhanjiangcity.Theassessmentcoverageof
the
notthe
spatialdistributiondoes
completelycoincidewith
city
boundaries.Conse-
quently,
havean
clustering
classes
obviousaggregation
withthefourextremeareasof
landvaluedistributions.65%ofspatialobjectsarelocatedintheregionsofhighlandprices,only8%isdistributedinre-gionsoflowlandprices.Thehigherthelandpricesoftheregion,themoreintensivethedistributionofthespatialob-jects.Theregionswithasmallmembershipdegreeoftenhave
Figure10
Relationshipofhousepriceandclusteringresultsin2008
DENGYuetal.:GeneralmultidimensionalcloudmodelanditsapplicationonspatialclusteringinZhanjiang
797
alowlandpriceseither,especiallyinthepricelowlandbetweenclasses,justasthespatial
objecta1,a2,a3andb1inFigure6,whichreflectthefiercecompetitionforspaceobjectsbetweenclasscenters.Thepricelowlandsrevealthecharacteristicsofweaklyabsolutecon-trollingforceofalltheclassesoverobjects,andtheclusteringresultismostlyinfluencedbytheseregions.
5 Conclusionsanddiscussion
(1)Cloudmodelhasdualcharacteristicsoffuzzynessandrandomness,anditshowsgreatsuperiorityintheexpressionofconceptualfineness.One-dimensionalcloudmodelcannotaccuratelyreflectmulti-attributecharacteristicsofthereal-world,andessentialinformationofspatialobjectswaslostduringtheprocedureofsimpledatafusion.Standardtwo-dimensionalcloudmodelovercomessomeshortcomingsofone-dimensionalcloud,butitstillcannotmeettheneedsofsimulatingthenon-homogeneousandnon-symmetrychar-acteristicsofcomplexgeographicalphenomena.Thispaperputsforwardageneralmulti-dimensionalcloudmodel,andtheproblemsabovewereresolvedeffectivelyandfac-tually.
(2)Basedonthedemonstrativestudy,adetailedinterpretationofclusteringresultsismadefromtheintegratedperspectiveofthespatialdistributionofmembershipdegreeofspatialclustering,andthecomparativestudyofFCMandacoupledanalysisofresidentiallandprices.Generalmulti-dimensionalcloudmodelcouldreflecttheintegratedcharacteris-ticsofspatialobjectsbetter,whilethespatialclusteringresultscanrevealthepotentialin-formationofspatialdistribution,andrealizespatialdivisionmoreaccuratelyincomplexcircumstances.
(3)Thepracticalvalueofgeneralmulti-dimensionalcloudmodelinspatialclusteringisnotable.However,parametersetting,theaccuracyanduncertaintyofthemodelareprob-lemstobeovercome.Thecharacteristicofthemodelisthatalltheparametershaveappro-priategeographicalmeanings.Thismakesthedescriptionofgeographicalphenomenamorereasonable.Duetothecomplexityofspatialinteractionsamonggeographicalentities,thegenerationofacloudmodelisstillaspecificandchallengingtask.
References
AnkerstM,BreunigMM,KriegelHPetal.,1999.OPTICS:Orderingpointstoidentifytheclusteringstructure.
In:Proc.ACMSIGMOD’99Int.Conf.onManagementofData,PhiladephiaPA,1999.BerkhinP,2000.Surveyofclusteringdataminingtechniques.AccrueSoftware.
BezdekJC,1981.PatternRecognitionwithFuzzyObjectiveFunctionAlgorithms.NewYork:PlenumPress.
ChenHuilin,1998.Afuzzycomprehensiveanalysisoftheresource-environmentconsciousnessofthepeoplein
MashanregionofGuizhouProvince.ScientiaGeographicaSinica,18(4):379–386.(inChinese)
DiKaichang,LiDeyi,LiDeren,1999.Cloudtheoryanditsapplicationsinspatialdataminingandknowledgediscovery.JournalofImageandGraphics,11(4):930–935.(inChinese)
EsterM,KriegelHP,SanderJetal.,1996.Adensity-basedalgorithmfordiscoveringclustersinlargespatialdatabases.In:Proc.1996Int.Conf.KnowledgeDiscoveryandDataMining(KDD’96),1996:226–331.
HouYingzi,ChenXiaoling,WangFangxiong,2008.FuzzycomprehensiveevaluationofwaterenvironmentvaluebasedonGIS.ScientiaGeographicaSinica,28(1):90–95.(inChinese)
JiangRong,FanJianhua,LiDeyi,2000.Automaticgenerationofpan-concept-treeonnumericaldata.Chinese
JournalofComputers,23(5):470–476.(inChinese)
KarypicG.,HanEH,1999.CHAMELEON:Ahierarchicalclusteringalgorithmusingdynamicmodeling.Com-puter,32:68–75.
KaufmanL,RousseeuwPJ,1990.Findinggroupsindata:Anintroductiontoclusteranalysis.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 台州2025年浙江台州临海市事业单位招聘76人笔试历年参考题库附带答案详解
- 南京2025年江苏南京特殊教育师范学院长期招聘30人(一)笔试历年参考题库附带答案详解
- 二零二五养老院入住协议
- 农机具租赁合同二零二五年
- 工资调整协议书
- 实习生协议书
- 拉赞助协议书二零二五年
- 房地产抵押合同范例二零二五年
- 海鲜加盟协议合同范例简单二零二五年
- 食堂用工人员的劳务协议书二零二五年
- 行政事业单位固定资产培训
- 6.1.2化学反应与电能 课件 2024-2025学年高一下学期化学人教版(2019)必修第二册
- 2025年云南省农业大学招聘工作人员历年自考难、易点模拟试卷(共500题附带答案详解)
- (二诊)成都市2022级2025届高中毕业班第二次诊断性检测语文试卷(含官方答案)
- 湖南省长沙市2024-2025学年九年级下学期入学考试英语试卷(含答案无听力原文及音频)
- 2025年国家会展中心上海有限责任公司招聘笔试参考题库含答案解析
- 2024国家电投集团中国电力招聘(22人)笔试参考题库附带答案详解
- 《餐厅案例》课件
- 2025年教育革新:利用AI技术打造个性化学习
- 防腐保温施工综合单价表
- 菱形挂篮安装检查验收记录表挂篮表
评论
0/150
提交评论