




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数轴教学设计一、内容和内容解析1.内容本章是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第一章“有理数”1.2有理数第2课时,内容包括数轴的概念,用数轴上的点表示有理数.2.内容解析数轴是初中数学的核心概念,它是数形结合思想的产物,学习数轴是把数和形统一起来的第一次尝试.数轴建立了直线上的点与实数的对应,是一维的坐标系.数轴使数的概念和运算可以与位置、方向、距离等统一起来,使数的语言得到了几何解释,数有了直观意义.这不仅有助于对数的概念的理解,而且还可以从中得到启发而提出新的问题或结论(例如,相反数、绝对值、大小比较等).用数轴上的点表示实数,就是要使任意一个实数能用唯一确定的点表示,同时,任意一个点只能表示一个实数(这样要求的意义需要学生逐渐体会),在这样的要求下,明确规定原点、方向和单位长度“三要素”是必须而且自然的.这时,我们有:原点↔0(原点是区分方向的“基准”,0是区分正负的基准.)单位长度↔1(单位长度是度量线段长度的单位,1是实数单位,“单位”实际上给出了一个统一的标准.)方向↔符号(空间中,A,B两点“位置差别”的定量化定义,必须且只需“方向”和“长度”.数轴上,方向只有“左”“右”两种,可以理解为“相反方向”.在数轴上,正与负具有“相反方向”,正数与负数的实际意义就是描述现实中的“相反意义的量”,确定一个实数,需要“符号”和“绝对值”两个要素,它们正好对应了定量化定义A,B两点“位置差别”的“方向”和“长度”.)基于以上分析,确定本节课的教学重点为:会画数轴,能将有理数用数轴上的点表示出来.二、目标和目标解析1.目标(1)了解数轴的概念,会用数轴上的点表示有理数.(2)体会数轴三要素和有理数集(实数集)中0,1和数的符号之间的对应关系,从而体会数形结合思想.2.目标解析达成目标(1)的标志是:学生知道数轴是一条规定了原点、方向和单位长度的直线;给定一个有理数,学生能在数轴上找到表示它的点;能画出数轴,并用数轴上的点表示有理数.目标(2)是“内容所蕴含的思想方法”,学生需要体会的是在“用点表示数”时,数轴“三要素”保证了点与数的“一一对应”——给一个数,就有唯一确定的点与之对应;反之,给一个点,就有唯一的数与之对应.但本节课只要能体会有理数与数轴上点的对应性,不要刻意强调“给一个点,不一定有一个有理数与之对应”.三、教学问题诊断分析学生第一次遇到用形表示数的问题,困难在于其中蕴含的思想.可以借鉴引入负数时的经验,也要借鉴学生的生活经验.但在基本思想上,还是要借助于具体情境,教师先讲解,学生获得体验后进行模仿式举例.本节课中,“三要素”及其对于确定“数轴上的点”的意义(根据“三要素”,可以在数轴上找到唯一确定的点,否则“存在性”“唯一性”就做不到),有理数集(实数集)中0,1以及数的符号等与数轴上的相关要素的对应性,都需要教师引导.由于七年级学生的理解能力和思维训练有待提高,因此他们需要依赖直观、具体的实物来理解数轴这一抽象的数学工具.教学中为使课堂扎实、有效,调动学生的积极作用,整节课以观察、思考、探讨贯穿于教学各环节中,师生互动、情感交流渗透于始终.基于以上分析,确定本节课的教学难点为:数轴“三要素”与有理数集(实数集)中0,1以及数的符号的对应性.四、教学过程设计(一)出示问题,情景引入问题1:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆.试画图表示这一情景.师生活动:学生小组讨论解决问题的方法,学生代表画图表示.追问1:马路可以用什么几何图形代表?(直线)追问2:你认为站牌起到了什么作用?(基准点)追问3:你是怎么确定问题中各物体的位置的?(方向,与站牌的距离)学生也可能只用与站牌的距离来表示,有不同表示最好,可以与下面的方法做比较,看哪个更方便.【设计意图】“三要素”为定向,用直线、点、方向、距离等几何符号表示实际问题,这是实际问题的第一次数学抽象.问题2:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义.我们知道,正数和负数可以表示两种具有相反意义的量,那么如何用数表示这些树、电线杆与汽车站牌的相对位置呢?师生活动:学生画图表示后提问:追问4:0代表什么?(基准点)追问5:数的符号的实际意义是什么?(方向)追问6:如图1,在一条直线上,A,B的距离等于B,C的距离,点B用3表示,点C用7.5表示,行吗?为什么?(不行,单位不一致,与实际情境不符.)图1追问7:上述方法表示了这些树、电线杆与汽车站牌的相对位置关系.例如,-4.8表示位于汽车站牌西侧4.8m处的电线杆,你能再举个例子吗?【设计意图】继续以“三要素”为定向,将点用数表示,实现第二次抽象,为定义数轴概念提供直观基础.问题3:我们对温度计非常熟悉,你能描述一下温度计的结构吗?比较上面的问题,你认为它用了什么数学知识?追问8:①零上5℃怎样表示?②零下10℃怎样表示?③0℃怎样表示?师生活动:教师可以先解释0℃的含义(冰水混合物的温度规定为0℃——温度的基准点).【设计意图】借用生活中的常用工具,说明正数、负数的作用,引导学生用“三要素”表达,为定义数轴概念提供又一个直观基础.问题4:你能说说上述两个实例的共同点吗?【设计意图】进一步明确“三要素”的意义,体会“用点表示数”和“用数表示点”的思想方法,为定义数轴概念提供进一步的直观基础.(二)探究新知师生活动:明确数轴的概念,并请学生带着下列问题阅读教科书P8:(1)画数轴的步骤是什么?(2)根据上述实例的经验,“原点”起什么作用?(“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点.)(3)你是怎么理解“选取适当的长度为单位长度”的?(与问题的需要相关,表示较大的数,单位长度取小一些)(4)数轴上,在原点的右边,离原点越远的点所表示的数;在原点的左边,离原点越远的点所表示的数.(越大;越小)师生活动:教师出示课件中的思考问题,引导学生思索,进而给出数轴的定义.同时引导学生探究共同得出数轴的三要素:定义:一般地说,在数学中人们用画图的方式把数“直观化”,通常用一条直线上的点表示数,这条直线叫做数轴.数轴要满足以下要求:(三要素)1.原点O——在直线上任意一点表示数“0”;2.正方向——通常取向右为正方向,画上箭头;3.单位长度——选取适当的长度作为单位长度,单位长度要统一.教师强调:这样我们就能够把学过的有理数意义表示在数轴上了.针对训练:判断下列直线都是数轴吗?说说你的理由.(1)×;(2)√;(3)×;(4)×;(5)×;(6)√.问题5:数轴可以表示整数,那么数轴怎么来表示分数和小数?问题6:观察数轴上的有理数排列的大小,你能得出哪些结论?(位于数轴左(下)边的数总比右(上)边的数小)追问:一般地,设a是一个正数,则数轴上表示数a在原点的____边,与原点的距离是____个单位长度;表示数-a的点在原点的____边,与原点的距离是____个单位长度.(右;a;左;a.)【设计意图】明细概念,并让学生在教师设计的引导问题中,加深对数轴概念中“三要素”的理解.(三)典例分析例1:说出下图中数轴上的A、B、C、D、E各点表示什么数?解:点A表示–3;点B表示+2;点C表示+4;点D表示0.5;点E表示-2.5.例2:画出数轴,并用数轴上的点表示下列各数:,-5,0,5,-4,解:如下图:【设计意图】通过两道例题的训练,使学生体会数轴上的点与有理数的对应的关系,并会规范地画出数轴.(四)当堂巩固1.数轴上表示数-3的点在原点的边,离原点个单位长度;表示数2.5的点在原点的边,离原点个单位长度.2.到原点距离为3个单位长度的数是.3.在数轴上点A表示数-4,若把点A向左移动1个单位长度,则移动后的点表示数是;若把点A向右移动3.5个单位长度,则移动后的点表示数是.4.在数轴上点A表示数1,点B与点A相距3个单位,点B表示数是.参考答案:1.左;3;右;2.5;2.-3、+3;3.-5;-0.5;4.+4、-2.【设计意图】巩固所学知识,加深对数轴概念以及用数轴上的点表示有理数的理解.(五)感受中考1.(2021•凉山州中考)下列数轴表示正确的是()A. B. C. D.【解析】解:A选项,应该正数在右边,负数在左边,故该选项错误;B选项,负数的大小顺序不对,故该选项错误;C选项,没有原点,故该选项错误;D选项,有原点,正方向,单位长度,故该选项正确;故选:D.2.(2021•怀化中考)数轴上表示数5的点和原点的距离是()A. B.5 C. D.【解析】解:数轴上表示数5的点和原点的距离是5;故选:B.3.(2020•长春中考)如图,数轴上被墨水遮盖的数可能为()A. B. C. D.【解析】解:由数轴上墨迹的位置可知,该数大于-4,且小于-2,因此备选项中,只有选项C符合题意,故选:C.【设计意图】通过对最近几年各地中考试题的训练,使学生提前感受到中考考什么,进一步了解考点.(六)课堂小结1.数轴的概念:一般地,在数学中人们用画图把数“直观化”.用一条直线上的点表示数,这条直线叫做数轴;2.数轴的三要素:原点、正方向、单位长度;3.数与形的关系:对应的关系;4.数学思想:数形结合的思想.5.你能举出引进数轴概念的一个好处吗?【设计意图】通过小结,使学生梳理本节课所学内容,掌握本节课的核心——数轴的“三要素”,感受通过数轴把数与形结合起来的好处.(七)布置作业P14:习题1.2:第2、3题;P15:习题1.2:第11(1)(2)题.五、教学反思数轴这一节是初中数学中非常重要的内容,从知识上讲它是数学学习和研究的重要工具,同时也是学习直角坐标系的基础,从思想方法上讲,数轴是数形转化、结合的重要媒介,是数形结合的起点,而数形结合是学生理解数学、学好数学的重要思想方法.本节课在学生学习了有理数概念的基础上,借助标有刻度的温度计表示温度高低这一事例,创设情境,进行教学,意在激发学习数学的兴趣,体会到数学和生活息息相关,通过讨论与探索,培养学生多方面的能力,掌握数学中的一些思想方法.情境设计的原型
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 碳酸饮料市场季节性变化分析考核试卷
- 网络教具开发考核试卷
- 电池小型化技术考核试卷
- 2025年租金分期付款的合同条款
- 2025天津租房合同简化版模板
- 2025汽车买卖合同书范本
- 2025新合同法关于每年工作时间的规定
- 湖北省“黄鄂鄂”2025年高三下学期4月联考数学
- 二零二五版夫妻婚姻协议书范例
- 商场店面承包协议合同书二零二五年
- 初中数学问题解决策略 特殊化教案2024-2025学年北师大版(2024)七年级数学下册
- 上海市控江中学2024-2025学年高二下学期期中联考英语试题(含答案)
- 浙江省台州市2025届高三下学期4月二模试题 地理 含解析
- 高等工程数学Ⅲ智慧树知到期末考试答案章节答案2024年南京理工大学
- 《小毛虫》课件下载
- 仓储装卸服务合同
- 式双钩五点安全带培训课件
- 名片设计 课件
- 钳工实操评分表(凹凸配合)
- 陕西省城市规划管理技术规定(定稿)
- 部编版七年级下册历史复习提纲(重点考察知识点)
评论
0/150
提交评论