版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
应力应变分析本章研究一点处的应力状态应力和应变是变形体力学中非常重要的概念。主要内容如下:应力应变分析§11.1一点处的应力状态§11.2应力张量的表示方法§11.3平面应力状态§11.4应力圆§11.5三向应力状态§11.6应变状态(与平面应力状态对应的)§11.7应力应变关系§11.1一点处的应力状态内力是截面上的分布内力的等效力系载荷集度称为上的平均应力将分解为与法向和切向的力,内力与应力的概念则称为正应力(法向应力)
称为剪应力(切应力)M点在截面上的正应力M点在截面上的剪应力应力的量纲一点处所有各方位截面上的应力的集合称为该点的应力状态,一点处的应力与其集度以及的法向相关,因此可用两个并在一起的矢量表示,并且在不同的坐标系中满足一点的坐标转换关系,这在数学上成为张量,描述应力的张量称为应力张量§11.2应力张量的表示方法取一包围该点的微元体(单元体)其各棱边相互垂直,各棱边的长分别为或由于单元体很小其上的应力可看作均匀分布各面上的应力可用3*3的矩阵表示(i,j=1,2,3)应力分量,应力张量。按上述约定假设应力的方向对正应力,则是拉应力为正。考虑单元体力矩对轴的平衡方程有:(不考虑体力偶)同理上述关系称为剪应力互等定理设表示轴与轴的方向余弦。则可以证明应力张量可用来描述一点的应力状态坐标变换矩阵§11.3平平面应力状态态若单元体上不为为零的应力分量量都位于同一平平面内称为平面面应力状态。例如当物体的表表面不受力时在在表面取出单元元体例如外力作用在在板平面内的薄薄板设不为0的应力力分量都位于xy平面内一点的应力状态应给出各方位截面上的应力情况,截面
上的应力,其与
轴正向的夹角以逆时针方向为正初始单元体:显然:由将代入
由同理可得(a)(b)(c)式有两个解将(c)式代入(b)式有单元体上剪应力力为0的截面称称为主平面主平面上的正应力称为主应力主应力为各方程截面上正应力的极值一个为极大值一个为极小值、以主平面为单元体的各面称为主单元体同理可求出的极值及例已知初始单元元体上的应力((Mpa)求主单元体上的的应力并画出主主单元体解:§11.4应应力圆一点处平面应力力状态的图解法法,直观各方位位的应力情况一一目了然。由(a)(b)上两式两边平方方后相加则上式在应力坐坐标中为一圆称称为应力圆莫尔尔圆圆心坐标:半径:因此,当连续变化至时,坐标绕应力圆的圆心转一周
应力圆的画法:建应力坐标系,取比例尺,定点或由圆心,半径——画圆
应力圆上一点,由绕圆心转过角,对应截面上的应力
应力圆画画法证明:同理可以证明:
及的方位极值点的方位与主平面方位相差对应的应力
任意两相互垂直直截面上的正应应力之和由(a)式例确定主平面方程画出主单元体及其上的应力,并在应力圆上标出图示截面上的应力单位:
解:主单元体:例2已知应力圆画出初始单元体及其应力主单元体及应力单位解:初始单元体体半径
主单元体:§11.5三三向应力状状态将三个主应力按按代数量的大小小顺序排列因此根据每一点点的应力状态可可以找到3个相相互垂直的主应应力三向应力圆空间任意方程截面上的应力,与三向应力圆所夹阴影面中某点的应力坐标表示。
一点处最大的剪应力
三向应力圆单向、双向、三三向应力状态例:求
解:在,平面内
三向应力圆如图图注意:不是同一一平面的应力不不能用平面应力力状态方法求解解。§11.6应应变状态(与平面应力状状态对应的)一点的变形有线应变和剪应变,单元体的相应尺寸与应变相乘得单元体的变形
在,坐标下
在,坐标下,方向到方向夹角
令,各个方位应变的情况称为一点的应变状态与平面应力状态的分析类似有
应变花:可证明:在应力或变形不是很大的情况下(线弹性范围)主应力与主应变的方位是重合的。虎克定律
比例系数称为材料的弹性模量
比例系数称为泊松比
§11.7应应力应变关系系1、单向应力状状态2、纯剪应力状状态在线弹性范围内
剪切虎克定律
——剪切弹性模量
可证明
只有作用时3、广义虎克定定律对主单元体例:已知一构件表面一点的应变
求该点的主应应力和最大剪应应力解:设
则
整理后例2已知,求设
解:取一单元体体积受应力作用变形变形后的体积
4、体积变形单位体积的改变量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国家对划定的18亿亩耕地红线乱占建房“零容忍”
- 子母车位买卖合同(2篇)
- 脑卒中护理课件
- 第二单元(复习)-四年级语文上册单元复习(统编版)
- 2024年河北省中考历史真题卷及答案解析
- 西南林业大学《城市公交规划与运营管理》2023-2024学年第一学期期末试卷
- 西京学院《设计制图》2021-2022学年第一学期期末试卷
- 电脑连接不了网络怎么办
- 西华师范大学《小学心理健康课程与教学》2021-2022学年第一学期期末试卷
- 西华师范大学《数字信号处理》2022-2023学年第一学期期末试卷
- 高中英语学习情况问卷调查表及调查报告
- 《微电影制作教程》第五章
- GRR计算公式表格
- 梅毒诊断标准
- 2023年catti三级笔译综合能力考试试题及答案解析
- 密封条格式大全
- 幸运的内德(一年级绘本阅读)课件
- 急性缺血性脑卒中急诊急救中国专家共识
- Python语言基础与应用学习通超星课后章节答案期末考试题库2023年
- 商业空间设计-课件
- 六年级上册英语说课稿- Module 6 Unit 2 I've got a stamp from China. -外研社(三起)
评论
0/150
提交评论