圆的对称性垂径定理_第1页
圆的对称性垂径定理_第2页
圆的对称性垂径定理_第3页
圆的对称性垂径定理_第4页
圆的对称性垂径定理_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

关于圆的对称性垂径定理第一页,共四十一页,编辑于2023年,星期日圆的对称性(1)圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?(2)你是怎么得出结论的?与同伴进行交流。圆的基本性质

圆是轴对称图形,其对称轴是任意一条过圆心的直线.第二页,共四十一页,编辑于2023年,星期日几个重要概念圆弧

圆上任意两点间的部分叫做圆弧,简称弧(arc).ABCD弦

连接圆上任意两点的线段叫做弦(chord).直径经过圆心的弦叫做直径(diameter).注

弧包括优弧和劣弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.例如优弧ACD(记作)劣弧ABD(记作)ACDAD第三页,共四十一页,编辑于2023年,星期日CD想想做做

如图,AB是⊙O的一条弦,作直径CD,使CD⊥AB,垂足为M.MOABBAABABAB第四页,共四十一页,编辑于2023年,星期日ABCD

如图,AB是⊙O的一条弦,作直径CD,使CD⊥AB,垂足为M.(1)右图是轴对称图形吗?如果是,其对称轴是什么?(2)你能发现图中有哪些等量关系?说一说你的理由。MO③AM=BM,小明发现图中有:由①CD是直径②CD⊥AB可推得⌒⌒④AC=BC,⌒⌒⑤AD=BD.第五页,共四十一页,编辑于2023年,星期日如图,小明的理由是:连接OA,OB,●OABCDM└则OA=OB.在Rt△OAM和Rt△OBM中,∵OA=OB,OM=OM,∴Rt△OAM≌Rt△OBM.∴AM=BM.∴点A和点B关于CD对称.∵⊙O关于直径CD对称,∴当圆沿着直径CD对折时,点A与点B重合,⌒⌒AC和BC重合,⌒⌒AD和BD重合.⌒⌒∴AC=BC,⌒⌒

AD=BD.(HL)第六页,共四十一页,编辑于2023年,星期日ABCD想想做做

如图,AB是⊙O的一条弦,作直径CD,使CD⊥AB,垂足为M.MO垂径定理

垂直于弦的直径平分这条弦,并且平分弦所对的弧.第七页,共四十一页,编辑于2023年,星期日垂径定理三种语言定理垂直于弦的直径平分这条弦,并且平分弦所对的弧.老师提示:垂径定理是圆中一个重要的结论,三种语言要相互转化,形成整体,才能运用自如.

想一想P906●OABCDM└CD⊥AB,如图∵CD是直径,∴AM=BM,⌒⌒AC=BC,⌒⌒AD=BD.第八页,共四十一页,编辑于2023年,星期日想想做做看下列图形,能否使用垂径定理?为什么?EEE不可以不可以可以可以第九页,共四十一页,编辑于2023年,星期日ABCD

如图,AB是⊙O的弦(不是直径),作一条平分AB的直径CD,交AB于点M.MO(1)右图是轴对称图形吗?如果是,其对称轴是什么?(2)你能发现图中有哪些等量关系?说一说你的理由。②CD⊥AB,小明发现图中有:由①CD是直径③AM=BM可推得⌒⌒④AC=BC,⌒⌒⑤AD=BD.第十页,共四十一页,编辑于2023年,星期日ABCD想想做做

如图,AB是⊙O的弦(不是直径),作一条平分AB的直径CD,交AB于点M.MO逆定理

平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.第十一页,共四十一页,编辑于2023年,星期日ABCDMO垂径定理

垂直于弦的直径平分这条弦,并且平分弦所对的弧.逆定理

平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.∵CD是直径,CD⊥AB,∴AM=BM,⌒⌒AC=BC,⌒⌒AD=BD.第十二页,共四十一页,编辑于2023年,星期日你可以写出相应的命题吗?垂径定理的逆定理如图,在下列五个条件中:只要具备其中两个条件,就可推出其余三个结论.●OABCDM└①CD是直径,③AM=BM,②CD⊥AB,⌒⌒④AC=BC,⌒⌒⑤AD=BD.第十三页,共四十一页,编辑于2023年,星期日●OABCDM└垂径定理及逆定理条件结论命题①②③④⑤①③②④⑤①④②③⑤①⑤②③④②③①④⑤②④①③⑤②⑤①③④③④①②⑤③⑤①②④④⑤①②③垂直于弦的直径平分弦,并且平分弦所对的两条弧.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧.垂直于弦并且平分弦所对的一条弧的直线经过圆心,并且平分弦和它所对的另一条弧.平分弦并且平分弦所对的一条弧的直线经过圆心,垂直于弦,并且平分弦所对的另一条弧.平分弦所对的两条弧的直线经过圆心,并且垂直平分弦.第十四页,共四十一页,编辑于2023年,星期日

课时P61-62第十五页,共四十一页,编辑于2023年,星期日2.圆对称性(2)

垂径定理的应用第十六页,共四十一页,编辑于2023年,星期日ABCDMO垂径定理

垂直于弦的直径平分这条弦,并且平分弦所对的弧.逆定理

平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.∵CD是直径,CD⊥AB,∴AM=BM,⌒⌒AC=BC,⌒⌒AD=BD.第十七页,共四十一页,编辑于2023年,星期日你可以写出相应的命题吗?垂径定理的逆定理如图,在下列五个条件中:只要具备其中两个条件,就可推出其余三个结论.●OABCDM└①CD是直径,③AM=BM,②CD⊥AB,⌒⌒④AC=BC,⌒⌒⑤AD=BD.第十八页,共四十一页,编辑于2023年,星期日●OABCDM└垂径定理及逆定理条件结论命题①②③④⑤①③②④⑤①④②③⑤①⑤②③④②③①④⑤②④①③⑤②⑤①③④③④①②⑤③⑤①②④④⑤①②③垂直于弦的直径平分弦,并且平分弦所对的两条弧.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧.垂直于弦并且平分弦所对的一条弧的直线经过圆心,并且平分弦和它所对的另一条弧.平分弦并且平分弦所对的一条弧的直线经过圆心,垂直于弦,并且平分弦所对的另一条弧.平分弦所对的两条弧的直线经过圆心,并且垂直平分弦.第十九页,共四十一页,编辑于2023年,星期日●OABCDM└按图填空:(1)若CD⊥AB,CD为直径,则______,________,_______;(2)若AM=BM,CD为直径,则______,________,_______;(3)若CD⊥AB,AM=BM,则______,________,_______;(4)若AC=BC,CD为直径,则______,________,_______;第二十页,共四十一页,编辑于2023年,星期日挑战自我填一填1、判断:⑴垂直于弦的直线平分这条弦,并且平分弦所对的两条弧.()⑵平分弦所对的一条弧的直径一定平分这条弦所对的另一条弧.()⑶经过弦的中点的直径一定垂直于弦.( )⑷圆的两条弦所夹的弧相等,则这两条弦平行.()⑸弦的垂直平分线一定平分这条弦所对的弧.()×√××√第二十一页,共四十一页,编辑于2023年,星期日挑战自我垂径定理的推论

如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?提示:这两条弦在圆中位置有两种情况:●OABCD1.两条弦在圆心的同侧●OABCD2.两条弦在圆心的两侧垂径定理的推论

圆的两条平行弦所夹的弧相等.第二十二页,共四十一页,编辑于2023年,星期日例1、如图,已知在⊙O中,弦AB的长为8厘米,圆心O到AB的距离为3厘米,求⊙O的半径.ABMO垂径定理的应用第二十三页,共四十一页,编辑于2023年,星期日弓形的定义:由弦及其所对的弧组成的图形叫做弓形。弓形高:弧的中点到弦的距离叫做弓形的高。第二十四页,共四十一页,编辑于2023年,星期日垂径定理三角形已知:如图,直径CD⊥AB,垂足为E.⑴若半径r=2,AB=,求OE、DE的长.⑵若半径r=2,OE=1,求AB、DE的长.drh第二十五页,共四十一页,编辑于2023年,星期日drh垂径定理三角形弦长a,弦心距d,半径r,及弓形高h四者之间的关系知2求2(1)已知r,d(2)已知r,h(3)已知r,a(4)已知d,h(5)已知a,d(6)已知a,h在a,d,r,h中,已知其中任意两个量,可以求出其它两个量.⑴d+h=r⑵第二十六页,共四十一页,编辑于2023年,星期日垂径定理的应用(测公路的弯道的半径

)解:连接OC.

设弯路的半径为Rm,则0F=(R-90)m.

∵OE⊥CD,

∴CF=1/2CD=1/2×600=300(m).

根据勾股定理,得OC2=CF2+OF2,

即R2=3002+(R-90)2

解这个方程,得R=545.

所以,这段弯路的半径为545m.RmF0CDE例2.如图,一条公路的转弯处是一段圆弧(即图中,点O是的圆心),其中CD=600m,E为上一点,且OE⊥CD,垂足为F,EF=90m.求这段弯路的半径.CDCDCD第二十七页,共四十一页,编辑于2023年,星期日例:1300多年前,我国隋朝建造的赵州石拱桥(如图)的桥拱是圆弧形,它的跨度(弧所对是弦的长)为37.4m,拱高为7.2m,求桥拱的半径(精确到0.1m).第二十八页,共四十一页,编辑于2023年,星期日解:如图,用表示桥拱,所在圆的圆心为O,半径为Rm,经过圆心O作弦AB的垂线OD,D为垂足,与相交于点C.根据垂径定理,D是AB的中点,C是的中点,CD就是拱高.由题设在Rt△OAD中,由勾股定理,得解得R≈27.9(m).答:赵州石拱桥的桥拱半径约为27.9m.RD37.47.2第二十九页,共四十一页,编辑于2023年,星期日例:在半径为5的圆内,有两条互相平行的弦,长度分别为6和8,求这两条平行弦之间的距离。练:在半径为5的圆内,有一个等腰梯形,它的两底长度分别为6和8,求这个等腰梯形的面积。第三十页,共四十一页,编辑于2023年,星期日垂径定理的应用2、在直径为650mm的圆柱形油槽内装入一些油后,截面如图所示.若油面宽AB=600mm,求油的最大深度.ED┌

600BAO600ø650DC第三十一页,共四十一页,编辑于2023年,星期日2.如图,某地有一圆弧形拱桥,桥下水面宽为7.2米,拱顶高出水面2.4米。现有一艘宽3米、船舱顶部为长方形并高出水面2米的货船要经过这里,此货船能顺利通过这座拱桥吗?第三十二页,共四十一页,编辑于2023年,星期日∴此货船能顺利通过这座拱桥.解:如图,用表示桥拱,所在圆的圆心为O,半径为Rm,经过圆心O作弦AB的垂线OD,D为垂足,与相交于点C。根据垂径定理,D是AB的中点,C是的中点,CD就是拱高由题设得在Rt△OAD中,由勾股定理,得解得R=3.9(m).在Rt△ONH中,由勾股定理,得第三十三页,共四十一页,编辑于2023年,星期日3、已知:如图,⊙O

中,AB为弦,C

为的中点,OC交AB

于D

,AB=6cm,CD=1cm.求⊙O

的半径OA.第三十四页,共四十一页,编辑于2023年,星期日如图,M为⊙O内的一点,利用尺规作一条弦AB,使AB过点M.并且AM=BM.●O●M第三十五页,共四十一页,编辑于2023年,星期日4.如图,圆O与矩形ABCD交于E、F、G、H,EF=10,HG=6,AH=4.求BE的长.·ABCD0EFGH第三十六页,共四十一页,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论