版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1/1公因数和最大公因数教案(集合7篇)
公因数和最大公因数教案第1篇一、教学目标:
1、理解两个数的公因数和最大公因数的意义。
2、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。
3、培养学生抽象、概括的能力。
二、教学重难点:
理解公因数和最大公因数的意义。
三、教具准备:
多媒体课件,方格纸(每人一张)。
四、教学过程:
(一)复习导入
1.复习。
教师出示一组卡片,让学生说一说卡片上各数的倍数有哪些。
教师再出示一组卡片,让学生说一说卡片上各数的因数有哪些。
2.导入。
师:我们学会了求一个数的因数,想不想学习怎样求两个数或三个数公有的因数呢?今天我们就通过游戏来学习公因数和最大公因数。
(二)创设情境,引出问题
今天我们来玩一个找伙伴的游戏。(课件出示游戏规则:学号是12的因数的同学站到讲台左边,学号是16的因数的同学站到讲台右边)同学们想好了吗?1~16号同学现在开始找伙伴。
学生开始找伙伴,站好后发现问题,有三个同学不知道该站在哪边才好。
师:你们3个为什么没有找到伙伴?
生1:我的学号是1,既是12的因数,又是16的因数,不知道该站在哪边才好。
生2:我的学号是2,既是12的因数,又是16的因数,不知道该站在哪边才好。
生3:我的学号是4,既是12的因数,又是16的因数,不知道该站在哪边才好。
师揭示概念:1,2,4是12和16公有的因数,叫做它们的公因数。其中,4是最大的公因数,叫做它们的最大公因数。
设计意图:游戏环节的设计在教学中能为学生营造一个轻松、愉悦的学习氛围,学生们在这样的氛围中积极地参与数学活动,既体验了成功的快乐,又提高了自己的判断能力。
(三)求两个数的最大公因数
1.明确方法,提出要求。
师:先找两个数的因数,然后圈出两个数的公因数,再找出最大公因数,这就是我们求最大公因数的一般方法。那么你会求下面两个数的最大公因数吗?
课件出示教材60页例2:怎样求18和27的最大公因数?
2.学生试做后,组内交流。
3.讨论:如果只找出一个数的因数,你能找出两个数的最大公因数吗?
(先找较小的数18的因数,再看因数中哪些是27的因数,最后找出最大的一个)
4.反馈练习。
教师巡视,了解学生的做题情况。学生做完后,指名汇报,集体订正。
师:做完这道题,大家发现了什么?
(学生讨论后汇报)
(四)课堂小结通过本节课的学习,我们主要认识了公因数、最大公因数的意义。
公因数和最大公因数在现实生活中有着广泛的应用,我们初步了解了它的应用价值。
(五)谈谈这节课你有什么收获?
公因数和最大公因数教案第2篇教学目标:
1.通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。
2.在探索新知的过程中,培养学好数学的信心以及小组成员之间互相合作的精神。
重点难点:
初步了解两个数的公因数和最大公因数在现实生活中的应用。初步了解两个数的公因数和最大公因数在现实生活中的应用。
教学方法:
自主学习、合作探究
教学过程:
一、激趣导入
(约5分钟)
课件展示教材62页例3,今天我们要给这个房子铺砖大家感兴趣吗?要求要用整数块。
二、自主学习
(约5分钟)
1.几个数()叫做这几个数的公因数,其中最大的一个叫做()
2.16的因数有(),24的因数有(),16和24的公因数是(),最小公因数是(),最大公因数是()。
3.A=225,B=235,那么A和B的最大公因数是()。
4.用短除法求出99和36的最大公因数。
三、合作交流
(约13分钟)
小组合作学习教材第62页例3。
1.学具操作。
用按一定比例缩小的方格纸表示地面,用不同边长的正方形纸表示地砖,我们发现边长是厘米的正方形的纸可以正好铺满,没有剩余,其它的都不行。
2.仔细观察,你们发现能铺满的地砖边长有什么特点?把你的发现在小组里交流。
3.总结。
解决这类问题的关键,是把铺砖问题转化成求公因数的问题来求。
四、精讲点拨
(约8分钟)
根据自主学习、合作探究的情况明确展示任务,进行展示。教师引导讲解。
五、测评总结(约9分钟)
1.达标练习
(1)要将长18厘米、宽12厘米的长方形纸剪成正方形的纸,没有剩余,边长可以是几厘米?最长是几厘米?
(2)玫瑰花72朵,玉兰花48朵,用这两种花搭配成同样的花束(正好用完,没有剩余),最多能扎成多少束?每束有几朵玫瑰花和玉兰花?
(3)有一个长方形纸,长60厘米,宽40厘米,如果要剪成若干个同样大小的小正方形而没有剩余,剪出的小正方形的边长最长是多少?
2.全课总结
这节课你都学到了什么知识?有什么收获?
3.作业布置
练习十五5,6题。
板书设计:
最大公因数(2)
铺砖问题:求公因数
公因数和最大公因数教案第3篇【教学目标】
1、使学生在具体的操作活动中,认识公因数和最大公因数,会在集合图中分别表示两个数的因数和它们的公因数。
2、使学生会用列举的方法找到100以内两个数的公因数和最大公因数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。
3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。
【教学重、难点】
理解两个数的公因数和最大公因数的含义。
【教学准备】
学生准备12cm、宽8cm的长方形纸片,6张边长6cm的正方形纸片,8张边长4cm的正方形纸片。
【教学过程】
一、创设情境,激趣导课
1、这节课老师先请大家帮我解决一个问题:我们家有一个长18分米、宽12分米的贮藏室。现在老师想给贮藏室里铺上地砖。我在瓷砖市场看到两种砖,一种是边长为4分米的正方形瓷砖,一种是边长6分米的正方形瓷砖,你们帮我选一选,哪一种瓷砖能正好用整块铺满?
二、动手操作,探求新知
1、请同学们拿出准备好的长方形、正方形纸片,自己试着摆一摆。
2、生操作,师检查。
3、通过摆小正方形,我们发现了什么?老师应该选哪一种地砖?
(边长6分米的正好整块铺满,边长4分米的不能正好铺满,应该选边长6分米的地砖。
4、边长6分米的地砖长边和宽边各铺了几块?用算式怎样表示?地砖的边长6分米和贮藏室的长18分米,宽12分米有什么关系?
(长铺3块18÷6=3
宽铺2块12÷6=26即能被18整除,也能被12整除)
5、边长4分米的地砖不能正好铺满?长、宽边各铺了几次?用算式怎样表示?
(长铺了4次18÷4=4…2
宽铺了3次12÷4=34不能被长18整除,所以铺不满,能被12整除,所以宽能铺满)
6、比较两组算式,说说地砖的边长符合什么条件能用整块正好铺满?
边长既能被12整除,也能被18整除。
7、想象延伸
根据我们得出的结论,你在头脑里想一想,贮藏室还可以选择边长几分米的地砖?小组互相交流,并说说你是怎么想的?
(边长1分米,2分米,3分米的正方形地砖都能正好整筷铺满,因为这3个数既能被12整除,也能被18整除。)
1、2、3、6这4个数与18有什么关系?与12呢?
8、揭示概念
讲述:1、2、3和6既是18的因数,又是12的因数,它们就是12和18的公因数。其中最大的公因数是6,6就是12和18的最大公因数。
9、4是18和12的公因数吗?为什么?
三、自主探索,用列举的方法求公因数和最大公因数。
1、刚才我们认识了公因数和最大公因数,那么怎样求两个数的公因数和最大公因数呢?接下来我们一起探究这个问题。
(自主探索)提问:12和8的公因数有哪些?最大公因数是几?
你能试着用列举的方法找一找吗?
2、交流可能想到的方法有:
①依次分别写出8和12的所有因数,再找出公因数
②先找8的因数,再从8的因数里找出12的因数
③先找12的因数,再从12的因数里找出8的因数
比较②、③种方法,这两种方法有什么相同之处?哪一种简单,为什么?(8的因数个数少。)
3、明确:8和12的公因数有1、2、4.4就是8和12的最大公因数。
4、用集合图表示
8和12的公因数也可以用集合圈来表示,我们用左边的圈表示8的因数,用右边的圈表示12的因数,那么相交的部分表示什么?应该填什么数?
提示不要重复填写,提问:6是12和8的公因数吗?为什么?3呢?8呢?
四、巩固练习
我们学会了用两种不同的方法来求两个数的公因数和最大公因数,下面我们来做一组练习。
1、练一练
自己完成,注意找的时候一对一对找,不要遗漏。
2、练习五的第一题、第2题、第3题,自己完成。
五、总结
这节课我们主要认识了公因数和最大公因数,掌握了求两个数的公因数和最大公因数的方法。这一知识在实际生活中应用非常广泛,下节课我们主要应用这一知识来解决实际问题。
公因数和最大公因数教案第4篇教学目标:
1、经历找两个数的公因数的过程,理解公因数和最大公因数的意义。
2、探索找两个数的公因数的方法,会正确找出两个数的公因数和最大公因数。
基本教学过程:
一、创设活动情境,进行找因数活动:
1、用乘法算式的方式分别找12和18的因数,
2、用集合的方式找出12和18的因数,分别填在各自的圈中。
3、同位交流找因数的方法。
二、自主探索,总结找两个数的公因数的方法:
1、交流方法
2、激趣导思
①小组讨论:
两个集合相交的部分填那些因数?
②小组汇报:
③师总结:揭示公因数和最大公因数的概念。
这两个集合相交的部分填的这些因数就是12和18的公因数,其中最大的一个就是它们的最大公因数。
④还有其他方法吗?
小组讨论:
小组汇报:
⑤总结找两个数公因数的方法
3、拓展引思:
①15和5014和3512和484和7
说说你是怎么想的?学生明确找两个数公因数的一般方法,并对找有特征数的最大公因数的特殊方法有所体验。
注意:教师出题时,数字不要太大,要注意把握难度要求。
②练一练,第42页第1题。第2题。第3题。
③第43页第4题:
让学生找出这几组数的公因数后,说说有什么发现?
④第43页第5题:
⑤数学探索:
三、总结。
教学反思:
公因数和最大公因数教案第5篇教学目标:
1、结合解决问题理解公因数和最大公因数的意义,学会求两个数的最大公因数的方法。
2、⑴在探索公因数和最大公因数意义的过程中,经历观察、猜测、归纳等数学活动,进一步发展初步的推理能力。在解决问题的过程中,能进行有条理、有根据地进行思考。
⑵学会用公因数、最大公因数的知识解决简单的现实问题,体验数学与生活的密切联系。
3、在学生探索新知的过程中,培养学生学好数学的信心以及小组成员之间互相合作的精神。
教学重点:理解公因数与最大公因数的意义,用短除法求最大公因数的方法。
教学难点:找公因数和最大公因数的方法。
教学过程:
一、情境导入
师:我们鲸园小学的校本课程开展的丰富多彩,同学们都报了自己喜欢的课程去学习,这样更有利于我们充分的展示自己的爱好特长。我们四五班就是每次校本课程的剪纸活动班,你喜欢剪纸吗?瞧,这是老师搜集了一些同学们在活动中的好作品。(课件展示剪纸作品)
师:现在我们来制作奥运福娃。第一步必须先裁好纸张。老师这里有一张长方形的纸长12厘米,宽18厘米。把这张纸剪成边长是整厘米的正方形,猜猜看,要想剪完后没有剩余,正方形的边长可以是几厘米呢?(学生猜)
师:这只是我们的猜测,你要用具体的事实来说服大家。
二、解决问题
1、师:到底哪位同学的猜想是正确的呢?为了验证一下,请每个组拿出准备好的学具,用小正方形纸片(要求学生剪成彩色的)在长方形的纸上摆一摆,把摆的情况记录下来,看有几种不同的摆法。
用手中的学具摆摆看。(学生分组进行拼摆并记录,在小组内进行交流)。
2、师:请每个组汇报一下你们摆的结果。
小组汇报
师:如何剪才能没有剩余?
师:那么这张纸能剪几张?
师:还有其他剪法吗?(2、3、6让学生充分进行交流)
师:请大家认真观察我们摆的结果,你有什么发现?这些1、2、3、6与12和18有什么关系?我们能不能从12和18的因数上来解释上面的剪法呢?
独立观察,总结规律,教师根据学生的发言进行小结。
师:也就是说,要想正好摆满,正方形纸片的边长数应既是12的因数,也是18的因数。所以,1、2、3、6是12和18的公有的因数,我们可以把这4个数叫做12和18的公因数,公因数中最大的数是几?
师:我们把这个数称为12和18的最大公因数
师:为了更形象地表示出1、2、3、6与12和18的关系我们可以用集合圈的形式表示出来。出示相交的集合圈
(用集合圈的形式分别板书12和18的因数,然后把两个集合圈连起来,用交集的形式板书12和18的公因数。)
师:中间部分1、2、3、6既是12的因数,也是18的因数。它们是12和18的公因数,其中6最大,是24和18的最大公因数。(出示课件)
3、怎样找12和18的公因数和最大公因数呢?请同学们根据已有的知识在小组内合作探索一下找公因数的方法
学生探索并交流。
4、练一练:用集合圈的形式求出16和28的公因数和最大公因数。
5、师:求两个数的公因数和最大公因数还可以用列举法。(出示课件)
6、师:求公因数和最大公因数除了用集合圈和列举法之外,还有一个更简便的方法(出示用短除法求12和18的公因数和最大公因数)
师引出最大公因数是它们共有质因数的乘积。
三、练习
1、用短除法求36和42的最大公因数。
2、生活中的数学:
用这两朵花搭配成同样的花束(正好用完,没有剩余),最多能扎成多少束?
公因数和最大公因数教案第6篇一、教学内容
最大公因数(二)
教材第82、83页练习十五的第2一9题。
二、教学目标
1.培养学生独立思考及合作交流的能力,能用不同方法找两个数的最大公因数。
2.培养学生抽象、概括的能力。
三、重点难点
掌握找两个数最大公因数的方法。
四、教具准备
投影。
五、教学过程
1.完成教材第82页练习十五的第2题。
学生先独立完成,然后集体交流找最大公因数的经验,并将这8组数分为三类。
2.完成教材第82页练习十五的第3一5题。
学生独立填在课本上,集体交流。
3.完成教材第83页练习十五的第6题。
学生独立填写,集体交流,体会两个数的最大公因数是1的几种情况。
4.完成教材第83页练习十五的第7一11题。
学生独立审题,理解题意,然后试着解答,集体交流。
5.指导学生阅读教材第83页的“你知道吗”。
请学生试着举例。提问:互质的两个数必须都是质数吗?你能举出两个合数互质的例子吗?
思维训练
1.某服装厂的甲车间有42人,乙车间有48人。为了开展竞赛,把两个车间的工人分成人数相等的小组。每组最多有多少人?
2.有一个长方体,长70厘米,宽50厘米,高45厘米。如果要切成同样大的小正方体,这些小正方体的棱长最大可以是多少厘米?
3.把一块长8分米、宽6分米的铁皮切割成同样大小的正方形铁皮,如果没有剩余,正方形个数又要最少,那么可以切割成多少块?
课堂小结
通过本节课的学习,主要掌握了找两个数的最大公因数的方法。找两个数的最大公因数,可以先分别写出这两个数的因数,再圈出相同的因数,从中找到最大公因数;也可以先找到一个数的因数,再从大到小,看看哪个数是另一个数的因数,从而找到最大公因数。
公因数和最大公因数教案第7篇教学内容:教科书第30页,练习五第12~14题、思考题。
教学目标:
1.通过练习,使学生进一步掌握求两个数最大公因数和最小公倍数的方法,进行有条理思考。
2.通过练习,使学生建立合理的认知结构,锻炼学生的思维,提高解决实际问题的能力。
教学重点:进一步理解公倍数和公因数的含义,弄清它们的联系与区别。
教学难点:弄清
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年数字水位仪项目申请报告
- 2025年国土资源普查核仪器项目申请报告模范
- 2024-2025学年西藏那曲市巴青县三上数学期末统考试题含解析
- 军训心得体会汇编15篇
- 2025年水上加油船项目规划申请报告模板
- 2025年放射性废气处置设备项目申请报告
- 2022装修监理年终工作总结
- 去超市实习报告范文8篇
- 住房申请书模板10篇
- 演讲竞聘演讲稿范文6篇
- 渔业法与监管制度
- 编码规则(标准)
- 家政培训行业的发展趋势与前景分析
- 定制酒项目投资分析及可行性报告
- 售后客服年终工作总结汇报
- 教师专业化发展经费保障制度
- 家长会课件:初二家长座谈会课件
- 健康照护师(初级)理论知识考核试题
- 物理九年级全册知识点总结(沪粤版)
- 20567-5纳税筹划-教案及讲稿
- 部编版三年级上册作文评价表
评论
0/150
提交评论