




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
污水处理设计—毕业论文英文翻译BIODEGRADABILITYANDCHANGEOFPHYSICALCHARACTERISTICSOFPARTICLESDURINGANAEROBICDIGESTIONOFDOMESTICSEWAGEAbstract:Atthehigh-rateanaerobictreatmentofdomesticsewage,bothbiologicalandphysicalprocessesplayanimportantrole.Therefore,theanaerobicbiodegradabilityofraw,paper-filteredandmembrane-filteredsewageandblackwaterhasbeeninvestigatedinbatchexperiments.Additionally,theeffectofanaerobicdigestiononphysicalcharacteristics,likeparticlesize,surfacetensionandzeta-potential,ofthepresentparticlesisstudied.Thebiodegradabilityofdomesticsewageandblackwaterat308Cisalmostsimilar(71?74%).Moreover,ahighmethanogenesisofthecolloidalfractionindomesticsewage(86_3%)isachieved,showingthatthelowremovalofcolloidalparticlesincontinuoushigh-rateanaerobicreactorsisduetolowphysicalremovalratherthanbiodegradability.Thelowestbiodegradabilityisdemonstratedforthedissolvedfraction(62%).Theresultsshowthatafteranaerobicdigestiontheaverageradiusofparticleswithdiameter54.4and50.45mmincreasedfordomesticsewage,whileitdecreasedforblackwater.Partofthesurface-activecomponentsindomesticsewageisnotbiodegradedduringanaerobicbatchdigestion,asindicatedbythedevelopmentofthesurfacetension.Thenegativezeta-potentialofallparticleshardlychangesduringdigestion,showingthatcolloidalinteractionswerenotaffectedbyanaerobicdigestion.Keywords:anaerobictreatment,domesticsewage,blackwater,biodegradability,particlesize,surfactants,zeta-potentialINTRODUCTIONSeveralauthorshaveshownthatparticlesrepresentthemajorpart,upto85%,ofthetotalCOD(CODt)indomesticsewage(Levineetal.,1985;Zeemanetal.,1997).Theseparationofparticulateanddissolvedcompoundsindomesticsewageisusuallymadebyfiltrationthroughamembranefilterwithaporediameterofapproximately0.45mm(NielsenandHarremoes,1995).Theparticlesareoftenseparatedinasuspendedandacolloidalpart,withaparticlesizeofrespectivelylargerthan4.4mmandbetween0.45and54.4mm,althoughthesizerangeforcolloidalparticlesisnotinagreementwiththedefinitionasusedincolloidchemistry.Attreatmentunderanaerobicconditions,colloidalCOD(CODcol)fromdomesticsewageisremovedtoalowerdegreethanunderaerobicormicroaerophillicconditionsandrepresents60?80%ofthee.uentCODtofananaerobicreactor(Yodaetal.,1985;Wang,1994;Wangetal.,1995).TheremovalofCODcolinbatchrecirculationexperimentsatlongetentiontimes,indicateshoweverthatcolloidalarticlesarebiodegradable(LastandLettinga,992;Wang,1994).Sofarthishasneverbeenproven.Atthehigh-rateanaerobictreatmentofdomesticsewage,bothbiologicalandphysicalprocessesplayanimportantrole.Particlescanonlybeconvertedviahydrolysis,afterbeingphysicallyremovedbyadsorption,settlingorentrapmentinthesludgebed.Particlecharacterizationbasedonthebiologicalandphysicalaspectsarethereforeofthesameimportance.Thepresenceofsurfactantsindomesticsewage,whichareknowntoadsorbatbothsolid/liquidandliquid/airinterfaces,mayaffecttheanaerobicbiodegradabilityofparticles.Surfactantshavetheabilitytoemulsifypoorlysolublehydrophobiccompoundsinwater,thuspotentiallyimprovingtheaccessibilityofthesesubstratestomicroorganisms(Rouseetal.,1994).Ontheotherhand,theemulsifyingeffectmightpreventthephysicalremovaloftheparticles.Moreoverinhibitionofanaerobicbiodegradationoforganiccompoundsinthepresenceofsurfactantshavealsobeenreported(WagenerandSchink,1987;Rouseetal.,1994).Boller(1993)mentionedthatthesurfactantconcentrationinZuÈrichCitywastewaterwas17?22mglÿ1andthenon-ionicandanionicsurfactantsrepresentthemainpart(91?94%).Linearalkylbenzenesulphonatesconstitutethemajoranionicsurfactantfractioninhouseholds(Holtetal.,1998)withaverageconcentrationsof4and3mgindomesticsewageinTheNetherlands(WaterandFeijtel,1995)andinUK(Holtetal.,1998),respectively.Atlowconcentrations,surfactantsarepresentasmonomers.Micellesareformedabovethecriticalmicelleconcentration(CMC).TheCMCofdodecylbenzenesulphonateamountsto264mglÿ1(MukerjeeandMysels,1971).Therefore,surfactantsindomesticsewageseemtobepresentasmonomers.Thesizeofparticlesindomesticsewageaffectsbothbiologicalandphysicalprocesses(Levineetal.,1985).Gravitationalanddragforcespredominateovercolloidalforces(vanderWaalsattractionandelectrostaticrepulsion)forlargerparticles,whilecolloidalforcesaremoreimportantforparticleslessthanafewmm(Gregory,1993).Thezeta-potential,whichrepresentsthepotentialonorjustoutsidetheSternlayer,isanimportantphysicalparameterforcolloidalparticleseparationbecauseelectrostaticinteractionsofcolloidalparticlesaremainlyrelatedtothezeta-potential.Thisresearchaimsforthedeterminationoftheanaerobicbiodegradabilityofthesuspended,colloidalanddissolvedfractionofdomesticsewageandblackwater.Moreover,thechangeinphysicalcharacteristics,likeparticlesize,zeta-potentialandsurfacetensionasaresultofbiodegradationisdetermined.MATERIALSANDMETHODSAnaerobicdigestionofdomesticsewageandblackwaterAnaerobicbatchdigestionhasbeencarriedoutinduplicateseriesofserumbottlesof120mleachateachtemperature.Toeachbottle100mlofwastewaterisadded.Thebiogascompositionintheheadspaceofeachbottleismonitoredintime.Foreachbottle,CODfractions,volatilefattyacids(VFA),andsurfacetensionweredetermined.Twoseriesofexperimentshavebeenperformed.Inthefirstrun,rawandpaper-filteredsewagewasdigestedat4,20and30Candbottlesweremonitoredafter8,15,23and43days.Theaimofthesecondrunwastoconfirmtheresultsofthefirstrunandtofindthemaximumconversionofwastewatertomethane(biodegradability).Thesecondrunwasperformedwithraw,paper-andmembrane-filtered(notinduplicate)sewageandblackwaterat20and30Candmonitoringwascarriedoutafter15,28and135days.Inthesecondrunalsotheaverageparticleradiusandzeta-potentialweremeasured.AnalysisCODwasanalysedusingthemicro-methodasdescribedbyJirkaandCarter(1975).RawsampleswereusedforCODt,4.4mmfoldedpaper-filtered(Schleicher&Schuell5951/2,Germany)samplesforCODpand0.45mmmembrane-filtered(Schleicher&SchuellME25,Germany)samplesfordissolvedCOD(CODdis).ThesuspendedCOD(CODss)andCODcolwerecalculatedbythedifferencesbetweenCODtandCODp,CODpandCODdis,respectively.Intheexperimentsitwasdi?culttohaverepresentativesamplesforCODtduetotheformationoflarge?ocsduringanaerobicdigestion.Therefore,onlyCODpandCODdisarepresented.VFAweredeterminedfrommembrane-filteredsamplesbygaschromatography.Thechromatograph(HewlettPackard5890A,PaloAlto,USA)wasequippedwitha2m_2mm(innerdiameter)glasscolumn,packedwithSupelcoport(100?120mesh)coatedwith10%FluoradFC431.Operatingconditionswere:column,1308C;injectionport,2008C;?ameionizationdetector,2808C.N2saturatedwithformicacidat208Cwasusedasacarriergas(30ml/min).ThebiogascompositionCH4,CO2,N2andO2wasdeterminedina100mlsampleusingFisonsInstrumentgaschromatographymodelGC8000series,equippedwithcolumnsconnectedinparallel(split1:1)?(1.5m_2mm)Te?on,packedwithchromosorb108,(60?80mesh),anda(1.2m_2mm)stainlesssteel,packedwithmolecularsieve5A,(60?80mesh).Heliumwasusedascarriergas(45mlminÿ1).Theoven,detectorandinjectiontemperatureswere40,100and1108C,respectively.Allmeasurementswereperformedinduplicate.Anindicationofthepresenceofsurface-activecomponentscanbeobtainedbymeasuringthesurfacetensionwiththeWilhelmy-platemethod.Itislikelythatindomesticsewage,surfactantswillstronglycontributetotheloweringofthesurfacetensionoftheaqueoussolution.AftertheCMC,surfacetensionbecomesalmostindependentoftheoverallconcentration.However,oneshouldbeawarethatalsoothersurface-activecomponentscancontributetotheloweringofthesurfacetensionandthereforethequalitativeinterpretationcanbepresented.Inrun1,thesurfacetensionwasmeasuredfortheoriginalsampleswithoutfiltration.Theformationoflarge?ocsduringrun1increasedthestandarddeviationsofthesurfacetensionmeasurements.Moreover,thesurfacetensionofwastewaterslightlyincreasesafterpaperfiltration(fromtheresultsofrun1).Therefore,thesurfacetensioninrun2wasmeasuredforallsamplesafterpaperandmembranefiltration.Thehydrodynamicparticleradiuswasdeterminedwithdynamiclightscattering.Measurementswerecarriedoutina2mlcylindricalquartzcellusinganALV5000systemwithaLexel150mWmultilineAr-laser.Particleswitharadiusbetween2.5nmand5mmcanbedetected.Themeasurementswereperformedforbothpaper-andmembrane-fiteredsamples.Foreachsample,theaverageparticleradiuswasmeasuredseventimesatanangleof90ElectrophoreticmobilitiesweredeterminedwithaMalvernZetasizerIII.Zeta-potentialswerecalculatedfromtheSmoluchowskiequation.Measurementswereperformedatconstantionicstrength(0.02MKCl)andsampleswerepaperfilteredtoremovebigparticles.CalculationsThetotalCH4productionineachserumbottlewasthesummationoftheCH4intheheadspaceandthedissolvedCH4.ThedissolvedCH4wascalculatedaccordingtoHenry'slaw.Percentageofhydrolysis(H),acidification(A)andmethanogenesis(M)werecalculatedaccordingtoequations(1),(2)and(3)respectively.H,AandMofCODcolfordomesticsewageinrun2werecalculatedbysubtractingtheresultsofmembrane-filteredsewagefromtheresultsofpaper-filteredsewageandapplyingequations(1),(2)and(3),respectively.Similarly,H,AandMofCODssfordomesticsewageinrun2werecalculatedbysubtractingtheresultsofpaper-filteredsewagefromtheresultsofrawsewage.Fig.1.ThecourseofthetotalCH4productionduringtheanaerobicbatchdigestionofrawsewage(}),paper-filteredsewage(&),membrane-fiteredsewage(n)andblackwater(*)inrun2attemperatureof20and30C.Fig.2.Thecourseofthesurfacetensionduringtheanaerobicbatchdigestionofraw(})andpaper-filtered(&)sewageinrun1attemperatureof4,20and30C.RESULTSANDDISCUSSIONBiodegradabilityTable1summarizesthecalculatedpercentagesofhydrolysis,acidificationandmethanogenesisforeachwastewatersampleafter43and135daysofdigestion,inruns1and2,respectively.Theresultsofrun1showthat43daysofbatchdigestionarenotsucientforcompleteanaerobicdigestionevenat30C.TheVFAconcentrationexceeds100mgCODÿ1latallappliedconditions.TheresultsofthetotalCH4productioninrun2(Fig.1)showthatthemaximumconversionofthedomesticsewagefractionsandblackwaterisachievedafterabout80daysat30C.Figure1theanaerobicdigestionhasacharacteristiclag-phaseperioddependingonthetemperatureandthesizeoftheparticles.At20Conlyrawsewagereachedthemaximumconversionafter135daysofdigestion.Themaximummethanogenesisforrawsewagewassimilarattemperaturesof20and30Cindicatingthatanaerobictreatmentisnotonlyapromisingtechniqueintropicalbutalsoinmoderateareas.Thebiodegradabilityofblackwater,rawsewageandpaper-filteredsewageat30Cisapproximatelythesame,viz,71?74%,whilethatofthemembranefilteredfractionwasrelativelylow(62%).Noreporteddataareavailabletocomparewiththepresentedresults.Table2presentsthemaximumhydrolysis,acidificationandmethanogenesisoftheCODssandCODcolfractionofdomesticsewageat30C.ThemaximumhydrolysisforCODssandCODcolissimilar,whilethemaximumacidificationandmethanogenesisarehigherforCODcolascomparedtoCODss.Hydrolysisofsuspendedparticlesseemstoproducemorenon-degradableCODdisthanhydrolysisofcolloidalparticles.LastandLettinga(1992)reportedalowermaximumremovalofCODdisof54%duringbatchrecirculationofpre-settledsewageofthesameoriginasusedintheherepresentedexperiments.Thislowerbiodegradabilitymightbeduetotheproductionofnon-degradableCODdisfromthehydrolysisofparticlespresentinpre-settledsewage.SurfacetensionFig.2.Thecourseofthesurfacetensionduringtheanaerobicbatchdigestionofraw(})andpaper-filtered(&)sewageinrun1attemperatureof4,20and30C.Thesurfacetensionisameasureforthepresenceofsurface-activecompounds,suchasdetergents.Thedevelopmentofthesurfacetensionintimeduringbothruns1and2,wasalmostsimilarfortemperaturesof20and308C(Figs2and3).Themaximumsurfacetensionwashowevermuchlowerat48Cascomparedtothatattemperaturesof20and308C.Aplateauvalueonthesurfacetensionisobtainedbetween15and25days.Thisperiodismuchshorterthanthecharacteristicanaerobicdigestiontime.Itseemsthatasmallamountofhighlysurface-activecomponentsarerapidlydecreased.Degradationofthedetergentsseemmuchslowerleadingtoamaximumsurfacetensionmuchlowerthanthatofwater.Theinitialsurfacetensionofpaper-filteredblackwaterwashigherthanthatforpaper-filtereddomesticsewage(Fig.3),probablyduetothefactthathardlyanydetergentsareaddedtoblackwater.After135daysbatchdigestionat20and30Cthemaximumsurfacetensionofblackwateralmostreachedthatofwater.Partofthesurfactantswasretainedduringfiltrationasshownbythehigherinitialsurfacetensionofpaper-filteredascomparedtorawsewage(Fig.2),whilethatofmembrane-?lteredsewageishigherthanthatofpaper-filteredsewage(Fig.3).Astheinitialsurfacetensionofthemembrane-filteredsewagewasstilllowerthanthatofwater,somesurfactantswereremaining,evenafter135daysbatchdigestion(Fig.3).Thesurfactants,remainingafterdigestion,arehoweverremovedbyarepeatedmembranefiltrationpriortomeasurement(Fig.3),whichindicatesthattheyaremainlyadsorbedtoparticlesproducedduringthedigestionprocess.Fig.3.Thecourseofthesurfacetensionduringtheanaerobicbatchdigestionofrawsewage(}),paper-filteredsewage(&),member-filteredsewage(n)andblackwater(*)inrun2attemperatureof20and30C.AverageradiusFigure4showsthattheaverageinitialradiusofparticlesafterpaperormembrane-fitrationofblackwaterismuchhigherascomparedtothatofdomesticsewage.Althoughtherawsewagewaspaper-filteredwithadiameterof4.4mm,theaverageradiusoftheparticlesinpaper-filteredsewagewasonly188nm.Therefore,alargequantityofverysmallparticlesispresentindomesticsewage.Thelatterisconfirmedbythelowaverageradiusof68nmoftheparticlesinmembrane-filteredsewage.Aperiodof135daysbatchdigestionofraw,paper-andmembrane-filteredsewagefollowedbypaperormembranefiltrationresultedinanincreaseoftheaverageradiusatboth20and30C.Itiswellknownthathydrolysiscausesadecreaseinthewastewatersubstrateparticles,whileremainingsubstrateisovergrownwithbiomass(Sandersetal.,2000),whichcanresultinanincreaseintheaverageradiusoftheparticles.Theanaerobicdigestionofmembrane-filteredsewageproducescolloidalparticles.After135daysofbatchdigestionat20and308C,theCODcolconcentrationinthemembrane-filteredsamplesamountedto,respectively,38and20mglÿ1.MethanogenesisofCODdismightthereforeaffecttheremovalofCODcolinacontinuousanaerobicreactortreatingdomesticsewage.Batchdigestionofblackwaterfor15?28daysfollowedbyeitherpaperormembranefiltrationdecreasedtheaverageradiusoftheparticlesatboth20and308C.However,after135daysbatchdigestion,italmostremainedunchangedforsamplesafterpaperfiltrationandincreasedforsamplesaftermembranefitration.Therefore,inthefirst15?28days,thehydrolysiswashigherthantheentrapmentofparticlestotheproducedbiomass.Fig.4.Thecourseoftheaverageradiusduringtheanaerobicbatchdigestionofrawsewage(}),paper-filteredsewage(&),membrane-filteredsewage(n)andblackwater(*)inrun2attemperatureof20and30C.ZetapotentialTable3showstheassessedvaluesofthezeta-potentialinrun2.Anaerobicbatchdigestionforaperiodof135days,ledtoonlyaslightdecreaseinthenegativezeta-potentialforallwastewatersamples.Thus,duringanaerobicdigestion,thenumberofnegativegroupsperunitarearemainsalmostconstantandelectrostaticrepulsionbetweenthecolloidalparticlesdoesnotchangesignificantly.GeneraldiscussionThehighbiodegradabilityofdomesticsewageandblackwaterrevealsthepotentialofanaerobictreatment.Moreover,ahighmethanogenesisofthecolloidalfractionindomesticsewage(86_3%)isachieved,showingthatthelowremovalofCODcolincontinuoushigh-rateanaerobicreactorsisduetolowphysicalremovalratherthanbiodegradability.Thedevelopmentofthesurfacetensionduringbatchdigestionindicatesalimitedbiodegradabilityofthepresentsurfactants.Animportantpartofthesurfactantsinsewageisformedbydetergents,whicharereportedtohavealowanaerobicbiodegradability.Thepresentresultsalsoshowthatpartofthesurfactantsisnotbiodegradedduringanaerobicbatchdigestion.Moreover,itisdemonstratedthatsurfactantsarepartlyconnectedtoparticles,bothsuspendedandcolloidal.Thelattercouldaffectthestabilityandtherefore,lowremovalofcolloidalparticlesindomesticsewage.Thoughcolloidalparticleswerehydrolysedtoahighdegree,theaverageparticlesizeincreasedduetogrowthofbiomass.Incontinuoushigh-ratesystems,thelattercannotbeexpected,asbiodegradationcanonlytakeplaceafterphysicalremovalbythesludgebed.Thezeta-potentialofallparticlesisnegativeandhardlychangesduringdigestion,showingthatcolloidalinteractionswerenotaffectedduetoanaerobicdigestion.Astheanaerobicbiomassalsohasanegativecharge(Morganetal.,1990),colloidalremovalincontinuousanaerobicsystemstreatingdomesticsewagecanbeexpectedtoremainlow,independentoftheappliedconditions.ImprovementofthecolloidalfractionandtherewithconversiontoCH4gas,couldbeimposedbyadditionofcoagulants,fordestabilisationofthecolloids.Bypre-removaloftheSSinafirstanaerobicstep,thecostsoftheuseofcoagulantsinthesecondstepcouldbereduced.AshydrolysisofsuspendedparticlesproducesmoreinertdissolvedCODthanhydrolysisofcolloidalparticles,theintroductionofafirsthigh-loadedanaerobicstepfortheremovalofSScouldmoreoverimprovethedissolvede.uentquality.ThelatterisalsoshownbyElmitwallietal.(1999a).TheremovalofSSfromdomesticsewagepriortomethanogenesiscanbeachievedbyeithersettlingBiodegradabilityandchangeofphysicalcharacteristicsTable3.Zeta-potentialatconstantionicstrength(0.02MKCl)forrawandpaper-filteredsewageandblackwaterbeforeandafteranaerobicbatchdigestioninrun2attemperaturesof20and308C.StandarddeviationsarepresentedinparenthesesCONCLUSIONS*Theanaerobicbiodegradabilityofdomesticsewageandblackwaterat308Cisalmostsimilar*Themaximumconversiontomethaneat30Cwasthehighest(86%)forthecolloidalfractionindomesticsewagefollowedbythesuspendedfraction(78%),whilethemaximumconversionofthedissolvedfractionwasthelowest(62%).*Afteranaerobicbatchdigestion,theaverageradiusoftheparticleswithdiameter54.4and50.45mmindomesticsewageincreased,whiletheaverageradiusoftheseparticlesinblackwaterdecreased.*Partofthesurface-activecomponentsindomesticsewagewasnotbiodegradedduringanaerobicbatchdigestion,asindicatedbythedevelopmentofthesurfacetension.*Thenegativezeta-potentialofallparticleshardlychangeduringdigestion,showingthatcolloidalinteractionswerenotaffectedbyanaerobicdigestion.ortreatmentinahigh-loadedanaerobicreactorREFERENCESBollerM.(1993)Removaloforganicmatterbyphysicochemicalmechanismsinwastewatertreatmentplants.WaterSci.Technol.27(11),167?183.ElmitwalliT.A.,ZandvoortM.,ZeemanG.andLettingaG.(1999a)Lowtemperaturetreatmentofdomesticsewageinup?owanaerobicsludgeblanketandanaerobichybridreactors.WaterSci.Technol.39(5),177?185.ElmitwalliT.A.,SklyarV.,ZeemanG.andLettingaG.(1999b).Lowtemperaturepre-treatmentofdomesticsewageinanaerobichybridandanaerobicfilterreactor.Proc.4th.IAWQConferenceonBio?lmReactors.17?20October1999,NewYork,USA.GregoryJ.(1993)Theroleofcolloidinteractionsinsolid-liquidseparation.WaterSci.Technol.27(10),1?17.HoltM.S.,FoxK.K.,BurfordM.,DanielM.andBucklandH.(1998)UKmonitoringstudyontheremovaloflinearalkylbenzenesulphonateintricklingfiltertypesewagetreatmentplants.ContributiontoGREAT-ERprojectsNo.2.TheSci.ofthetotalEnviron.210/211,255?269.JirkaA.andCarterM.J.(1975)Microsemi-automatedanalysisofsurfaceandwastewatersforchemicaloxygendemand.AnalyticalChem.47,1397?1401.LastA.R.M.,vanderandLettingaG.(1992)Anaerobictreatmentofdomesticsewageundermoderateclimatic(Dutch)conditionsusingup?owreactorsatincreasedsuperficialvelocities.WaterSci.Technol.25(7),LevineA.D.,TchobanaglousG.andAsanoT.(1985)Characterizationofthesizedistributionofcontaminantsinwastewater:treatmentandreuseimplications.J.WaterPollut.ControlFed.57(7),805?816.NielsenP.H.andHarremoesP.(1995)Solids:Reportofthediscussionsession.WaterSci.Technol.32(8),MorganJ.W.,ForsterC.F.andEvisonL.(1990)Acomparativestudyofthenatureofbiopolymersextractedfromanaerobicandactivatedsludge.WaterRes.24(6),743?750.MukerjeeP.andMyselsK.J.(1971)Criticalmicelleconcentrationofaqueoussurfactantsystems.NationalStandardReferenceDataSystem.USDepartmentofCommerce,Washington.RouseJ.D.,SabatiniD.A.,Su?itaJ.M.andHarwellJ.H.(1994)In?uenceofsurfactantsonmicrobialdegradationoforganiccompounds.CriticalRev.inEnviron.Sci.Technol.24(4),325?370.SandersW.T.M.,ZeemanG.andLettingaG.(2000)Anaerobichydrolysiskineticsofparticulatesubstrate.WaterSci.Technol.41(3),17?24.WagenerS.andSchinkB.(1987)Anaerobicdegradationofnonionicandanionicsurfactantsinenrichmentculturesandfixed-bedreactors.WaterRes.21(5),615?622.WangK.(1994)Integratedanaerobicandaerobictreatmentofsewage.Ph.D.Thesis,WageningenUniversity,TheNetherlands.WangK.,ZeemanG.andLettingaG.(1995)Alterationinsewagecharacteristicsuponaging.WaterSci.Technol.31(7),191?200.WatersJ.andFeijtelT.C.J.(1995)AIS/CESIOEnvironmentalsurfactantmonitoringprogramme:outcomeoffivenationalpilotstudiesonLAS.Chemosphere30,1939?1956.YodaM.,HattoriM.andMiyajiY.(1985)Treatmentofmunicipalwastewaterbyanaerobic?uidizedbed:behaviouroforganicsuspendedsolidsinanaerobictreatmentofsewage.Proc.Seminar/Workshop:AnaerobicTreatmentofSewage,Amherst,Mass.,USA,161?197.ZeemanG.,SandersW.T.M.,WangK.Y.andLettingaG.(1997)Anaerobictreatmentofcomplexwastewaterandwasteactivatedsludge.Applicationofup?owanaerobicsolidremoval(UASR)reactorfortheremovalandprehydrolysisofsuspendedCOD.WaterSci.Technol.35(10),121?128.用生物降解法与厌氧颗粒的物理变化特性来降解污水摘要:在高速率厌氧处理生活污水时,生物和物理进程发挥了重要作用。因此,研究小组调查了大量实验中被厌氧生物降解的原材料---过滤纸和过滤膜处理后的生活污水,对厌氧消化影响的物理特性如粒径、表面张力等,进行了研究。生活污水的生物降解性能和污水在摄氏30度时几乎71%-74%是相似。此外,高产甲烷的胶体颗粒在国内86%的污水里,已经证明了低去除胶体在连续高速厌氧反应器是由于低物理切除而非生物降解性。最低的生物降解性,提出了被解散的分数为所有胶体颗粒总数的62%。结果表明,经过厌氧消化的粒子的平均半径在0.45毫米到4.4毫米增加的同时,对生活污水的降解却在减少。部分生活污水的表面活性物质在厌氧消化过程中是不经过生物降解的,这就表明了污水表面张力的特性。所有的粒子在负面泽塔-潜在里几乎没有变化,表明在消化胶体均没有受到厌氧消化的相互作用。关键词:厌氧处理,生活污水,生物降解性,颗粒大小,表面活性剂,简介:多位学者表明:在国内污水中,粒子代表的主要部分里,总化学需氧量就高达85%。微粒和溶解的化合物,通常是通过孔径大约为0.45毫米的过滤膜来过滤的。然而,这种微粒通常是分离粒径大于4.4毫米或在0.45到4.4毫米之间与胶体悬浮部分,却不符合国际胶体化学所用的大小范围。厌氧条件下,生活污水里胶体的化学需氧量的含量远比在需氧或微需氧的条件下要低。经过对去除化学需氧量的再循环的实验研究发现,溶胶是可生物降解的,但这从来没有被证实过。在高速厌氧处理生活污水的过程中,非生物和物理过程起着重要的作用。粒子只能被转换为原料经水解后,被吸附、沉降或残留在污泥床上。因此,基于粒子的表征,其生物和物理方面是同样重要。众所周知,生活污水在表面活性剂的作用下,是被吸附在两个固体/液体和液体/空气界面,是有可能会影响厌氧生物降解性能的颗粒。表面活性剂在水中可溶性的疏水化合物里的乳化能力较差,从而可能改善微生物基质的可溶性。另一方面,乳化这一现象可以避免物理法去除粒子。而且,厌氧生物降解会抑制有机化合物在表面活性剂的存在也已被报道。保罗在1993年提到,苏黎世富裕的城市废水表面活性剂浓度约为17到21,其中非离子型和阴离子的表面活性是最主要的部分。线性烷基苯磺酸盐是主要构成阴离子表面活性剂的物质,在荷兰,污水的平均浓度约是3或4。在低浓度时、表面活性剂通常以单体存在。以上便形成了聚集体的临界胶束浓度(CMC)。十二烷基苯磺酸钠的临界胶束浓度为264毫克。因此,在国内污水中,表面活性剂似乎呈现为单体。在生活污水中,颗粒的大小也会影响生物和物理过程,其中重力和阻力的力量占主导地位。胶体力如范德华吸引力和静电斥力对粒子的静电作用较大。泽塔-潜在,主要体现了潜在的或仅仅是表层的,且由于静电作用的胶体粒子与泽塔-潜在有一定的相关性,是胶体粒子分离后的一个重要的物理参数。本研究的目的是确定生活污水中厌氧生物降解性的悬浮物、胶体和溶解的一部分。材料与方法在不同温度下,对生活污水的厌氧消化反应进行试验。首先,在每一份容器中加入血清瓶120毫升,再补充100毫升的废水,对每个含有沼气成分的瓶子采用时间监测。然后对每个瓶子里的化学需氧量分数,挥发性脂肪酸(挥发性脂肪酸)和表面张力进行了测定。该实验分为两部分。在首次运行时,在20?C和30?C的温度下对瓶子里的污水原材料和纸过滤分别在8,15,23和43天后进行监测。第二个实验目的是为了确认第一次运行的结果,并找出可生物降解废水中甲烷的最大的转变。第二次运行是在20?C和30?C时,污水原料中过滤纸和过滤膜分别在15,28和135天后进行监测(不重复)。第二轮运行结果证明,粒子的平均半径和zeta电势发生了变化。分析:实例表明,可以通过实验来测量颗粒的表面张力。但是同时也发现在处理生活污水时,很可能在表面活性剂的作用下降低的水溶液的表面张力。在测完临界胶束浓度后,表面张力的整体几乎是独立的浓度。然而,人们应该意识到,还有其他表面活性成分可以促进表面张力降低,因此,对以上结论提出了定性解释。在首次运行时,表面张力的样品测定是原始无过滤的。此外,从首次运行的结果可以发现,废水的表面张力在过滤纸后会增加。因此,在第二次运行时,对所有样品的表面张力进行纸和膜过滤的测量。确定颗粒半径与动态光散射。使用ALV5000、150mW的折线测量2毫升的圆柱石英细胞。粒子半径在2.5到5毫米之间,能被检测出来。每个样本,在90?的角度下对粒子的平均半径进行七次测定。分别测定了电泳迁移率与玛韦恩激光粒度仪,泽塔-电位的计算方程。在离子强度(0.02MKCl)恒定不变时,样品测量的数据表示,过滤纸可以消除大颗粒物质。计算利用甲烷生产总量是每个血清瓶甲烷的总和这一特点,利用亨利定律计算甲烷的产量。分别根据方程(1)、(2)、(3)计算(H)的百分比,水解酸化(A)和产甲烷(M)。生物降解性和物理特征的变化生活污水的化学需氧量中的A、M和H,分别应用方程(1)、(2)、(3),计算纸过滤和膜过滤污水的结果减去例2的结果。同样,化学需氧中的H,和M为通过计算所得的国内污水未经处理的结果。结果与讨论表1分别总结了每个污水样品在43天和135天之后,运行1和2计算的水解百分比、酸化和产甲烷量。1的运行结果表明,在30?C时运行43天是不完全厌氧消化,在所有应用环境的微生物里化学需氧量浓度超过100。总甲烷的结果在运行2(图1)表明,生活污水在30?C,约80天达到最大转换分数。图1中的厌氧消化有一个特点:厌氧消化的周期取决于温度和粒子的大小。在未经处理的污水里,只有在20?C时,且经过135天后才能达到最高的转换消化。这不仅需要较好的技术,而且在温和的热带地区,污水原材料的最大产甲烷量在20?C和30?C的温度下属于厌氧处理。图1、未经处理的污水厌氧消化过程期间,在温度为20和30?C时,运行纸过滤、膜过滤处理污水,测得实验中总甲烷的产生量。所得数据,可比较未经处理的污水和纸过滤的污水中的生物降解性在30?C时约有71%到74,是相同的,即该过滤膜处理的分数相对较低。提交结果表2给出生活污水中的一部分在30?C时CODss和CODcol的最大水解、酸化和产甲烷量。其中,CODss和CODcol的最大水解是相似的,而CODss最大时的酸化比产甲烷的CODcol高。悬浮颗粒物的水解产生更多的未降解的COD水解胶体。最后,Lettinga在1992年的报道中解决了在同一源的污水循环较低期间时的实验最高清除54%的CODdis。这可能是由于污水中可生物降解的CODdis水解而成的降解粒子决定的。表2。计
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 扬州卷-2025年中考第一次模拟考试数学试卷(含答案解析)
- 消防设施考试总结及试题答案
- 高职单招职业技能测试模拟试题及答案(二)
- 了解生态投资与可持续发展:2024年证券试题及答案
- 拓展视野:2024年CPMM试题及答案讨论
- 见义勇为表扬信范文2篇
- 班主任工作实习计划02
- 开立担保函协议(2025年版)
- 语文学习中常见问题分析试题及答案
- 2025年度自动驾驶技术研发终止合作协议通知函范文
- 高中生物知识点生物竞赛必备知识归纳总结
- 私募股权投资基金设立谅解备忘录签署版
- 消防水池 (有限空间)作业安全告知牌及警示标志
- 中国传统手工艺中英文介绍
- 土石临时围堰施工方案(内容丰富)
- 小学生认识货币-ppt课件
- 《图形创意设计》PPT课件(完整版)
- 胸腔积液.ppt1
- 煤矿培训教案机电安全知识
- 建设工程竣工联合验收申请报告及意见表
- 内蒙古高中毕业生学籍表毕业生登记表学年评语表成绩单身体健康检查表完整版高中档案文件
评论
0/150
提交评论