




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter25 OptionValuationMcGraw-Hill/IrwinCopyright©2010byTheMcGraw-HillCompanies,Inc.Allrightsreserved.1KeyConceptsandSkillsUnderstandandbeabletousePut-CallParityBeabletousetheBlack-ScholesOptionPricingModelUnderstandtherelationshipsbetweenoptionpremiumsandstockprice,exerciseprice,timetoexpiration,standarddeviation,andtherisk-freerateUnderstandhowtheoptionpricingmodelcanbeusedtoevaluatecorporatedecisions25-22ChapterOutlinePut-CallParityTheBlack-ScholesOptionPricingModelMoreaboutBlack-ScholesValuationofEquityandDebtinaLeveragedFirmOptionsandCorporateDecisions:SomeApplications25-33ProtectivePutBuytheunderlyingassetandaputoptiontoprotectagainstadeclineinthevalueoftheunderlyingassetPaytheputpremiumtolimitthedownsideriskSimilartopayinganinsurancepremiumtoprotectagainstpotentiallossTrade-offbetweentheamountofprotectionandthepricethatyoupayfortheoption25-44AnAlternativeStrategyYoucouldbuyacalloptionandinvestthepresentvalueoftheexercisepriceinarisk-freeassetIfthevalueoftheassetincreases,youcanbuyitusingthecalloptionandyourinvestmentIfthevalueoftheassetdecreases,youletyouroptionexpireandyoustillhaveyourinvestmentintherisk-freeasset25-55ComparingtheStrategiesStock+PutIfS<E,exerciseputandreceiveEIfS≥E,letputexpireandhaveSCall+PV(E)PV(E)willbeworthEatexpirationoftheoptionIfS<E,letcallexpireandhaveinvestment,EIfS≥E,exercisecallusingtheinvestmentandhaveSValueatExpirationInitialPositionS<ES≥EStock+PutESCall+PV(E)ES25-66Put-CallParityIfthetwopositionsareworththesameattheend,theymustcostthesameatthebeginningThisleadstotheput-callparityconditionS+P=C+PV(E)Ifthisconditiondoesnothold,thereisanarbitrageopportunityBuythe“low”sideandsellthe“high”sideYoucanalsousethisconditiontofindthevalueofanyofthevariables,giventheotherthree25-77Example:FindingtheCallPriceYouhavelookedinthefinancialpressandfoundthefollowinginformation:Currentstockprice=$50Putprice=$1.15Exerciseprice=$45Risk-freerate=5%Expirationin1yearWhatisthecallprice?50+1.15=C+45/(1.05)C=8.2925-88ContinuousCompoundingContinuouscompoundingisgenerallyusedforoptionvaluationTimevalueofmoneyequationswithcontinuouscompoundingEAR=eq-1PV=FVe-RtFV=PVeRtPut-callparitywithcontinuouscompoundingS+P=C+Ee-Rt25-99Example:ContinuousCompoundingWhatisthepresentvalueof$100tobereceivedinthreemonthsiftherequiredreturnis8%,withcontinuouscompounding?PV=100e-.08(3/12)=98.02Whatisthefuturevalueof$500tobereceivedinninemonthsiftherequiredreturnis4%,withcontinuouscompounding?FV=500e.04(9/12)=515.2325-1010PCPExample:PCPwith
ContinuousCompoundingYouhavefoundthefollowinginformation;Stockprice=$60Exerciseprice=$65Callprice=$3Putprice=$7Expirationisin6monthsWhatistherisk-freerateimpliedbytheseprices?S+P=C+Ee-Rt60+7=3+65e-R(6/12).9846=e-.5RR=-(1/.5)ln(.9846)=.031or3.1%25-1111Black-ScholesOption
PricingModelTheBlack-ScholesmodelwasoriginallydevelopedtopricecalloptionsN(d1)andN(d2)arefoundusingthecumulativestandardnormaldistributiontablestddttRESddNEedSNCRtsss-=÷÷øöççèæ++÷øöçèæ=-=-1221212ln)()(25-1212Example:OPMYouarelookingatacalloptionwith6monthstoexpirationandanexercisepriceof$35.Thecurrentstockpriceis$45,andtherisk-freerateis4%.Thestandarddeviationofunderlyingassetreturnsis20%.Whatisthevalueofthecalloption?LookupN(d1)andN(d2)inTable25.3N(d1)=(.9761+.9772)/2=.9767N(d2)=(.9671+.9686)/2=.9679C=45(.9767)–35e-.04(.5)(.9679)C=$10.7525-1313Example:OPMinaSpreadsheetConsiderthepreviousexampleClickontheexcelicontoseehowthisproblemcanbeworkedinaspreadsheet25-1414PutValuesThevalueofaputcanbefoundbyfindingthevalueofthecallandthenusingput-callparityWhatisthevalueoftheputinthepreviousexample?P=C+Ee-Rt–SP=10.75+35e-.04(.5)–45=.06Notethataputmaybeworthmoreifexercisedthanifsold,whileacallisworthmore“alivethandead,”unlessthereisalargeexpectedcashflowfromtheunderlyingasset25-1515Europeanvs.AmericanOptionsTheBlack-ScholesmodelisstrictlyforEuropeanoptionsItdoesnotcapturetheearlyexercisevaluethatsometimesoccurswithaputIfthestockpricefallslowenough,wewouldbebetteroffexercisingnowratherthanlaterAEuropeanoptionwillnotallowforearlyexercise;therefore,thepricecomputedusingthemodelwillbetoolowrelativetothatofanAmericanoptionthatdoesallowforearlyexercise25-1616Table25.425-1717VaryingStockPriceandDeltaWhathappenstothevalueofacall(put)optionifthestockpricechanges,allelseequal?TakethefirstderivativeoftheOPMwithrespecttothestockpriceandyougetdelta.Forcalls:Delta=N(d1)Forputs:Delta=N(d1)-1Deltaisoftenusedasthehedgeratiotodeterminehowmanyoptionsweneedtohedgeaportfolio25-1818WorktheWebExampleThereareseveralgoodoptionscalculatorsontheInternetClickonthewebsurfertogotoandclickontheBasicCalculatorunderAnalysisServicesPricethecalloptionfromtheearlierexampleS=$45;E=$35;R=4%;t=.5;=.2Youcanalsochooseastockandvalueoptionsonaparticularstock25-1919Figure25.1InsertFigure25.1here25-2020Example:DeltaConsiderthepreviousexample:Whatisthedeltaforthecalloption?Whatdoesittellus?N(d1)=.9767ThechangeinoptionvalueisapproximatelyequaltodeltatimesthechangeinstockpriceWhatisthedeltafortheputoption?N(d1)–1=.9767–1=-.0233Whichoptionismoresensitivetochangesinthestockprice?Why?25-2121VaryingTimetoExpiration
andThetaWhathappenstothevalueofacall(put)aswechangethetimetoexpiration,allelseequal?TakethefirstderivativeoftheOPMwithrespecttotimeandyougetthetaOptionsareoftencalled“wasting”assets,becausethevaluedecreasesasexpirationapproaches,evenifallelseremainsthesameOptionvalue=intrinsicvalue+timepremium25-2222Figure25.2Insertfigure25.2here25-2323Example:TimePremiumsWhatwasthetimepremiumforthecallandtheputinthepreviousexample?CallC=10.75;S=45;E=35Intrinsicvalue=max(0,45–35)=10Timepremium=10.75–10=$0.75PutP=.06;S=45;E=35Intrinsicvalue=max(0,35–45)=0Timepremium=.06–0=$0.0625-2424VaryingStandardDeviation
andVegaWhathappenstothevalueofacall(put)whenwevarythestandarddeviationofreturns,allelseequal?TakethefirstderivativeoftheOPMwithrespecttosigmaandyougetvegaOptionvaluesareverysensitivetochangesinthestandarddeviationofreturnThegreaterthestandarddeviation,themorethecallandtheputareworthYourlossislimitedtothepremiumpaid,whilemorevolatilityincreasesyourpotentialgain25-2525Figure25.3Insertfigure25.3here25-2626VaryingtheRisk-FreeRate
andRhoWhathappenstothevalueofacall(put)aswevarytherisk-freerate,allelseequal?ThevalueofacallincreasesThevalueofaputdecreasesTakethefirstderivativeoftheOPMwithrespecttotherisk-freerateandyougetrhoChangesintherisk-freeratehaveverylittleimpactonoptionsvaluesoveranynormalrangeofinterestrates25-2727Figure25.4Insertfigure25.4here25-2828ImpliedStandardDeviationsAlloftheinputsintotheOPMaredirectlyobservable,exceptfortheexpectedstandarddeviationofreturnsTheOPMcanbeusedtocomputethemarket’sestimateoffuturevolatilitybysolvingforthestandarddeviationThisiscalledtheimpliedstandarddeviationOnlineoptionscalculatorsareusefulforthiscomputationsincethereisnotaclosedformsolution25-2929WorktheWebExampleUsetheoptionscalculatorattofindtheimpliedvolatilityofastockofyourchoiceClickonthewebsurfertogototogettherequiredinformationClickonthewebsurfertogotonuma,entertheinformationandfindtheimpliedvolatility25-3030EquityasaCallOptionEquitycanbeviewedasacalloptiononthefirm’sassetswheneverthefirmcarriesdebtThestrikepriceisthecostofmakingthedebtpaymentsTheunderlyingassetpriceisthemarketvalueofthefirm’sassetsIftheintrinsicvalueispositive,thefirmcanexercisetheoptionbypayingoffthedebtIftheintrinsicvalueisnegative,thefirmcanlettheoptionexpireandturnthefirmovertothebondholdersThisconceptisusefulinvaluingcertaintypesofcorporatedecisions25-3131ValuingEquityandChanges
inAssetsConsiderafirmthathasazero-couponbondthatmaturesin4years.Thefacevalueis$30million,andtherisk-freerateis6%.Thecurrentmarketvalueofthefirm’sassetsis$40million,andthefirm’sequityiscurrentlyworth$18million.SupposethefirmisconsideringaprojectwithanNPV=$500,000.Whatistheimpliedstandarddeviationofreturns?Whatisthedelta?Whatisthechangeinstockholdervalue?25-3232PCPandtheBalance
SheetIdentityRiskydebtcanbeviewedasarisk-freebondminusthecostofaputoptionValueofriskybond=Ee-Rt–PConsidertheput-callparityequationandrearrangeS=C+Ee-Rt–PValueofassets=valueofequity+valueofariskybondThisisjustthesameasthetraditionalbalancesheetidentityAssets=liabilities+equity25-3333MergersandDiversificationDiversificationisafrequentlymentionedreasonformergersDiversificationreducesriskand,therefore,volatilityDecreasingvolatilitydecreasesthevalueofanoptionAssumediversificationistheonlybenefittoamergerSinceequitycanbeviewedasacalloption,shouldthemergerincreaseordecreasethevalueoftheequity?Sinceriskydebtcanbeviewedasrisk-freedebtminusaputoption,whathappenstothevalueoftheriskydebt?Overall,whathashappenedwiththemergerandisitagooddecisioninviewofthegoalofstockholderwealthmaximization?25-3434ExtendedExample–PartIConsiderthefollowingtwomergercandidatesThemergerisfordiversificationpurposesonlywithnosynergiesinvolvedRisk-freerateis4%CompanyACompanyBMarketvalueofassets$40million$15millionFacevalueofzerocoupondebt$18million$7millionDebtmaturity4years4yearsAssetreturnstandarddeviation40%50%25-3535ExtendedExample–PartIIUsetheOPM(oranoptionscalculator)tocomputethevalueoftheequityValueofthedebt=valueofassets–valueofequityCompanyACompanyBMarketValueofEquity25.6819.867MarketValueofDebt14.3195.13325-3636ExtendedExample–PartIIITheassetreturnstandarddeviationforthecombinedfirmis30%Marketvalueassets(combined)=40+15=55Facevaluedebt(combined)=18+7=25CombinedFirmMarketvalueofequity34.120Marketvalueofdebt20.880TotalMVofequityofseparatefirms=25.681+9.867=35.548Wealthtransferfromstockholderstobondholders=35.548–34.120=1.428(exactincreaseinMVofdebt)25-3737M&AConclusionsMergersfordiversificationonlytransferwealthfromthestockholderstothebondholdersThestandarddeviationofreturnsontheassetsisreduced,therebyreducingtheoptionvalueoftheequityIfmanagement’sgoalistomaximizestockholderwealth,thenmergersforreasonsofdiversificationshouldnotoccur25-3838ExtendedExample:
LowNPV–PartIStockholdersmaypreferlowNPVprojectstohighNPVprojectsifthefirmishighlyleveragedandthelowNPVprojectincreasesvolatilityConsideracompanywiththefollowingcharacteristicsMVassets=40millionFaceValuedebt=25millionDebtmaturity=5yearsAssetreturnstandarddeviation=40%Risk-freerate=4%25-3939ExtendedExample:
LowNPV–PartIICurrentmarketvalueofequity=$22.657millionCurrentmarketvalueofdebt=$17.343millionProjectIProjectIINPV$3$1MVofassets$43$41Assetreturnstandarddeviation30%50%MVofequity$23.769$25.339MVofdebt$19.231$15.66125-4040ExtendedExample:
LowNPV–PartIIIWhichprojectshouldmanagementtake?EventhoughprojectBhasalowerNPV,itisbetterforstockholdersThefirmhasarelativelyhighamountofleverageWithprojectA,thebondholdersshareintheNPVbecauseitreducestheriskofbankruptcyWithprojectB,thestockholdersactuallyappropriateadditionalwealthfromthebondholdersforalargergaininvalue25-4141ExtendedExample:
NegativeNPV–PartIWe’veseenthatstockholdersmightpreferalowNPVtoahighone,butwouldtheyeverpreferanegativeNPV?Undercertaincircumstances,theymightIfthefirmishighlyleveraged,stockholdershavenothingtoloseifaprojectfailsandeverythingtogainifitsucceedsConsequently,theymaypreferaveryriskyprojectwithanegativeNPVbuthighpotentialrewards25-4242ExtendedExample:
NegativeNPV–PartIIConsiderthepreviousfirmTheyhaveoneadditionalprojecttheyareconsideringwiththefollowingcharacteristicsProjectNPV=-$2millionMVofassets=$38millionAssetreturnstandarddeviation=65%EstimatethevalueofthedebtandequityMVequity=$25.423millionMVdebt=$12.577million25-4343ExtendedExample:
NegativeNPV–PartIIIInthiscase,stockholderswouldactuallypreferthenegativeNPVprojecttoeitherofthepositiveNPVprojectsThestockholdersbenefitfromtheincreasedvolatilityassociatedwiththeprojecteveniftheexpectedNPVisnegativeThishappensbec
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全新农药知识培训课件
- 民航维修计划培训课件
- 福建中学中考题数学试卷
- 二年级期考试卷数学试卷
- 浮阳中学6年级数学试卷
- 醉翁亭记注音解释版
- 2025年04月南平延平峡阳镇卫生院招聘驾驶员笔试历年专业考点(难、易错点)附带答案详解
- 2025年湖南郴州市第三人民医院招聘急需紧缺岗位人员10人笔试历年专业考点(难、易错点)附带答案详解
- 2024年12月公考时政常识积累(06日)笔试历年参考题库附带答案详解
- 2025至2030代驾产业市场深度调研及发展趋势与发展趋势分析与未来投资战略咨询研究报告
- 2024年萍乡市县区事业单位引进人才笔试真题
- 2025-2030中国透明无色聚酰亚胺薄膜行业发展动态及应用趋势预测报告
- 2025中国白酒酒业市场中期研究报告
- 2025重庆新华出版集团招聘18人笔试参考题库附带答案详解
- 离婚协议书正规打印电子版(2025年版)
- (外研版3起)英语五年级上册单词字帖书写练习(手写体)高清打印版
- 石家庄市国企招聘考试真题题库2024版
- 路面修复施工方案及路面石材下沉修复施工方案
- 部编八下语文游记阅读训练题语文八年级下册能力训练(部编版)
- 一例急性心肌梗死合并糖尿病酮症酸中毒患者的个案护理
- 生物安全自查表
评论
0/150
提交评论