版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter25 OptionValuationMcGraw-Hill/IrwinCopyright©2010byTheMcGraw-HillCompanies,Inc.Allrightsreserved.1KeyConceptsandSkillsUnderstandandbeabletousePut-CallParityBeabletousetheBlack-ScholesOptionPricingModelUnderstandtherelationshipsbetweenoptionpremiumsandstockprice,exerciseprice,timetoexpiration,standarddeviation,andtherisk-freerateUnderstandhowtheoptionpricingmodelcanbeusedtoevaluatecorporatedecisions25-22ChapterOutlinePut-CallParityTheBlack-ScholesOptionPricingModelMoreaboutBlack-ScholesValuationofEquityandDebtinaLeveragedFirmOptionsandCorporateDecisions:SomeApplications25-33ProtectivePutBuytheunderlyingassetandaputoptiontoprotectagainstadeclineinthevalueoftheunderlyingassetPaytheputpremiumtolimitthedownsideriskSimilartopayinganinsurancepremiumtoprotectagainstpotentiallossTrade-offbetweentheamountofprotectionandthepricethatyoupayfortheoption25-44AnAlternativeStrategyYoucouldbuyacalloptionandinvestthepresentvalueoftheexercisepriceinarisk-freeassetIfthevalueoftheassetincreases,youcanbuyitusingthecalloptionandyourinvestmentIfthevalueoftheassetdecreases,youletyouroptionexpireandyoustillhaveyourinvestmentintherisk-freeasset25-55ComparingtheStrategiesStock+PutIfS<E,exerciseputandreceiveEIfS≥E,letputexpireandhaveSCall+PV(E)PV(E)willbeworthEatexpirationoftheoptionIfS<E,letcallexpireandhaveinvestment,EIfS≥E,exercisecallusingtheinvestmentandhaveSValueatExpirationInitialPositionS<ES≥EStock+PutESCall+PV(E)ES25-66Put-CallParityIfthetwopositionsareworththesameattheend,theymustcostthesameatthebeginningThisleadstotheput-callparityconditionS+P=C+PV(E)Ifthisconditiondoesnothold,thereisanarbitrageopportunityBuythe“low”sideandsellthe“high”sideYoucanalsousethisconditiontofindthevalueofanyofthevariables,giventheotherthree25-77Example:FindingtheCallPriceYouhavelookedinthefinancialpressandfoundthefollowinginformation:Currentstockprice=$50Putprice=$1.15Exerciseprice=$45Risk-freerate=5%Expirationin1yearWhatisthecallprice?50+1.15=C+45/(1.05)C=8.2925-88ContinuousCompoundingContinuouscompoundingisgenerallyusedforoptionvaluationTimevalueofmoneyequationswithcontinuouscompoundingEAR=eq-1PV=FVe-RtFV=PVeRtPut-callparitywithcontinuouscompoundingS+P=C+Ee-Rt25-99Example:ContinuousCompoundingWhatisthepresentvalueof$100tobereceivedinthreemonthsiftherequiredreturnis8%,withcontinuouscompounding?PV=100e-.08(3/12)=98.02Whatisthefuturevalueof$500tobereceivedinninemonthsiftherequiredreturnis4%,withcontinuouscompounding?FV=500e.04(9/12)=515.2325-1010PCPExample:PCPwith
ContinuousCompoundingYouhavefoundthefollowinginformation;Stockprice=$60Exerciseprice=$65Callprice=$3Putprice=$7Expirationisin6monthsWhatistherisk-freerateimpliedbytheseprices?S+P=C+Ee-Rt60+7=3+65e-R(6/12).9846=e-.5RR=-(1/.5)ln(.9846)=.031or3.1%25-1111Black-ScholesOption
PricingModelTheBlack-ScholesmodelwasoriginallydevelopedtopricecalloptionsN(d1)andN(d2)arefoundusingthecumulativestandardnormaldistributiontablestddttRESddNEedSNCRtsss-=÷÷øöççèæ++÷øöçèæ=-=-1221212ln)()(25-1212Example:OPMYouarelookingatacalloptionwith6monthstoexpirationandanexercisepriceof$35.Thecurrentstockpriceis$45,andtherisk-freerateis4%.Thestandarddeviationofunderlyingassetreturnsis20%.Whatisthevalueofthecalloption?LookupN(d1)andN(d2)inTable25.3N(d1)=(.9761+.9772)/2=.9767N(d2)=(.9671+.9686)/2=.9679C=45(.9767)–35e-.04(.5)(.9679)C=$10.7525-1313Example:OPMinaSpreadsheetConsiderthepreviousexampleClickontheexcelicontoseehowthisproblemcanbeworkedinaspreadsheet25-1414PutValuesThevalueofaputcanbefoundbyfindingthevalueofthecallandthenusingput-callparityWhatisthevalueoftheputinthepreviousexample?P=C+Ee-Rt–SP=10.75+35e-.04(.5)–45=.06Notethataputmaybeworthmoreifexercisedthanifsold,whileacallisworthmore“alivethandead,”unlessthereisalargeexpectedcashflowfromtheunderlyingasset25-1515Europeanvs.AmericanOptionsTheBlack-ScholesmodelisstrictlyforEuropeanoptionsItdoesnotcapturetheearlyexercisevaluethatsometimesoccurswithaputIfthestockpricefallslowenough,wewouldbebetteroffexercisingnowratherthanlaterAEuropeanoptionwillnotallowforearlyexercise;therefore,thepricecomputedusingthemodelwillbetoolowrelativetothatofanAmericanoptionthatdoesallowforearlyexercise25-1616Table25.425-1717VaryingStockPriceandDeltaWhathappenstothevalueofacall(put)optionifthestockpricechanges,allelseequal?TakethefirstderivativeoftheOPMwithrespecttothestockpriceandyougetdelta.Forcalls:Delta=N(d1)Forputs:Delta=N(d1)-1Deltaisoftenusedasthehedgeratiotodeterminehowmanyoptionsweneedtohedgeaportfolio25-1818WorktheWebExampleThereareseveralgoodoptionscalculatorsontheInternetClickonthewebsurfertogotoandclickontheBasicCalculatorunderAnalysisServicesPricethecalloptionfromtheearlierexampleS=$45;E=$35;R=4%;t=.5;=.2Youcanalsochooseastockandvalueoptionsonaparticularstock25-1919Figure25.1InsertFigure25.1here25-2020Example:DeltaConsiderthepreviousexample:Whatisthedeltaforthecalloption?Whatdoesittellus?N(d1)=.9767ThechangeinoptionvalueisapproximatelyequaltodeltatimesthechangeinstockpriceWhatisthedeltafortheputoption?N(d1)–1=.9767–1=-.0233Whichoptionismoresensitivetochangesinthestockprice?Why?25-2121VaryingTimetoExpiration
andThetaWhathappenstothevalueofacall(put)aswechangethetimetoexpiration,allelseequal?TakethefirstderivativeoftheOPMwithrespecttotimeandyougetthetaOptionsareoftencalled“wasting”assets,becausethevaluedecreasesasexpirationapproaches,evenifallelseremainsthesameOptionvalue=intrinsicvalue+timepremium25-2222Figure25.2Insertfigure25.2here25-2323Example:TimePremiumsWhatwasthetimepremiumforthecallandtheputinthepreviousexample?CallC=10.75;S=45;E=35Intrinsicvalue=max(0,45–35)=10Timepremium=10.75–10=$0.75PutP=.06;S=45;E=35Intrinsicvalue=max(0,35–45)=0Timepremium=.06–0=$0.0625-2424VaryingStandardDeviation
andVegaWhathappenstothevalueofacall(put)whenwevarythestandarddeviationofreturns,allelseequal?TakethefirstderivativeoftheOPMwithrespecttosigmaandyougetvegaOptionvaluesareverysensitivetochangesinthestandarddeviationofreturnThegreaterthestandarddeviation,themorethecallandtheputareworthYourlossislimitedtothepremiumpaid,whilemorevolatilityincreasesyourpotentialgain25-2525Figure25.3Insertfigure25.3here25-2626VaryingtheRisk-FreeRate
andRhoWhathappenstothevalueofacall(put)aswevarytherisk-freerate,allelseequal?ThevalueofacallincreasesThevalueofaputdecreasesTakethefirstderivativeoftheOPMwithrespecttotherisk-freerateandyougetrhoChangesintherisk-freeratehaveverylittleimpactonoptionsvaluesoveranynormalrangeofinterestrates25-2727Figure25.4Insertfigure25.4here25-2828ImpliedStandardDeviationsAlloftheinputsintotheOPMaredirectlyobservable,exceptfortheexpectedstandarddeviationofreturnsTheOPMcanbeusedtocomputethemarket’sestimateoffuturevolatilitybysolvingforthestandarddeviationThisiscalledtheimpliedstandarddeviationOnlineoptionscalculatorsareusefulforthiscomputationsincethereisnotaclosedformsolution25-2929WorktheWebExampleUsetheoptionscalculatorattofindtheimpliedvolatilityofastockofyourchoiceClickonthewebsurfertogototogettherequiredinformationClickonthewebsurfertogotonuma,entertheinformationandfindtheimpliedvolatility25-3030EquityasaCallOptionEquitycanbeviewedasacalloptiononthefirm’sassetswheneverthefirmcarriesdebtThestrikepriceisthecostofmakingthedebtpaymentsTheunderlyingassetpriceisthemarketvalueofthefirm’sassetsIftheintrinsicvalueispositive,thefirmcanexercisetheoptionbypayingoffthedebtIftheintrinsicvalueisnegative,thefirmcanlettheoptionexpireandturnthefirmovertothebondholdersThisconceptisusefulinvaluingcertaintypesofcorporatedecisions25-3131ValuingEquityandChanges
inAssetsConsiderafirmthathasazero-couponbondthatmaturesin4years.Thefacevalueis$30million,andtherisk-freerateis6%.Thecurrentmarketvalueofthefirm’sassetsis$40million,andthefirm’sequityiscurrentlyworth$18million.SupposethefirmisconsideringaprojectwithanNPV=$500,000.Whatistheimpliedstandarddeviationofreturns?Whatisthedelta?Whatisthechangeinstockholdervalue?25-3232PCPandtheBalance
SheetIdentityRiskydebtcanbeviewedasarisk-freebondminusthecostofaputoptionValueofriskybond=Ee-Rt–PConsidertheput-callparityequationandrearrangeS=C+Ee-Rt–PValueofassets=valueofequity+valueofariskybondThisisjustthesameasthetraditionalbalancesheetidentityAssets=liabilities+equity25-3333MergersandDiversificationDiversificationisafrequentlymentionedreasonformergersDiversificationreducesriskand,therefore,volatilityDecreasingvolatilitydecreasesthevalueofanoptionAssumediversificationistheonlybenefittoamergerSinceequitycanbeviewedasacalloption,shouldthemergerincreaseordecreasethevalueoftheequity?Sinceriskydebtcanbeviewedasrisk-freedebtminusaputoption,whathappenstothevalueoftheriskydebt?Overall,whathashappenedwiththemergerandisitagooddecisioninviewofthegoalofstockholderwealthmaximization?25-3434ExtendedExample–PartIConsiderthefollowingtwomergercandidatesThemergerisfordiversificationpurposesonlywithnosynergiesinvolvedRisk-freerateis4%CompanyACompanyBMarketvalueofassets$40million$15millionFacevalueofzerocoupondebt$18million$7millionDebtmaturity4years4yearsAssetreturnstandarddeviation40%50%25-3535ExtendedExample–PartIIUsetheOPM(oranoptionscalculator)tocomputethevalueoftheequityValueofthedebt=valueofassets–valueofequityCompanyACompanyBMarketValueofEquity25.6819.867MarketValueofDebt14.3195.13325-3636ExtendedExample–PartIIITheassetreturnstandarddeviationforthecombinedfirmis30%Marketvalueassets(combined)=40+15=55Facevaluedebt(combined)=18+7=25CombinedFirmMarketvalueofequity34.120Marketvalueofdebt20.880TotalMVofequityofseparatefirms=25.681+9.867=35.548Wealthtransferfromstockholderstobondholders=35.548–34.120=1.428(exactincreaseinMVofdebt)25-3737M&AConclusionsMergersfordiversificationonlytransferwealthfromthestockholderstothebondholdersThestandarddeviationofreturnsontheassetsisreduced,therebyreducingtheoptionvalueoftheequityIfmanagement’sgoalistomaximizestockholderwealth,thenmergersforreasonsofdiversificationshouldnotoccur25-3838ExtendedExample:
LowNPV–PartIStockholdersmaypreferlowNPVprojectstohighNPVprojectsifthefirmishighlyleveragedandthelowNPVprojectincreasesvolatilityConsideracompanywiththefollowingcharacteristicsMVassets=40millionFaceValuedebt=25millionDebtmaturity=5yearsAssetreturnstandarddeviation=40%Risk-freerate=4%25-3939ExtendedExample:
LowNPV–PartIICurrentmarketvalueofequity=$22.657millionCurrentmarketvalueofdebt=$17.343millionProjectIProjectIINPV$3$1MVofassets$43$41Assetreturnstandarddeviation30%50%MVofequity$23.769$25.339MVofdebt$19.231$15.66125-4040ExtendedExample:
LowNPV–PartIIIWhichprojectshouldmanagementtake?EventhoughprojectBhasalowerNPV,itisbetterforstockholdersThefirmhasarelativelyhighamountofleverageWithprojectA,thebondholdersshareintheNPVbecauseitreducestheriskofbankruptcyWithprojectB,thestockholdersactuallyappropriateadditionalwealthfromthebondholdersforalargergaininvalue25-4141ExtendedExample:
NegativeNPV–PartIWe’veseenthatstockholdersmightpreferalowNPVtoahighone,butwouldtheyeverpreferanegativeNPV?Undercertaincircumstances,theymightIfthefirmishighlyleveraged,stockholdershavenothingtoloseifaprojectfailsandeverythingtogainifitsucceedsConsequently,theymaypreferaveryriskyprojectwithanegativeNPVbuthighpotentialrewards25-4242ExtendedExample:
NegativeNPV–PartIIConsiderthepreviousfirmTheyhaveoneadditionalprojecttheyareconsideringwiththefollowingcharacteristicsProjectNPV=-$2millionMVofassets=$38millionAssetreturnstandarddeviation=65%EstimatethevalueofthedebtandequityMVequity=$25.423millionMVdebt=$12.577million25-4343ExtendedExample:
NegativeNPV–PartIIIInthiscase,stockholderswouldactuallypreferthenegativeNPVprojecttoeitherofthepositiveNPVprojectsThestockholdersbenefitfromtheincreasedvolatilityassociatedwiththeprojecteveniftheexpectedNPVisnegativeThishappensbec
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版思想品德七年级下学期全册教案
- 2024至2030年中国摩托车轮平衡机数据监测研究报告
- 2024至2030年中国多功能制桶整形机行业投资前景及策略咨询研究报告
- 2024至2030年中国卷筒纸印刷压纹机数据监测研究报告
- 2024至2030年中国丙纶加弹丝数据监测研究报告
- 2024年中国隔离开关熔断器组市场调查研究报告
- 2024年中国脆碎度测试仪市场调查研究报告
- 2024年中国收录机压带轮市场调查研究报告
- 2024年中国伸缩门配件市场调查研究报告
- 2024年中国原味奶茶市场调查研究报告
- T∕CREA 005-2021 老年人照料设施与适老居住建筑部品体系标准
- BlueCat核心服务保障专家
- 绿树成荫(带意大利文)简谱五线谱钢琴谱正谱.pdf.docx
- 最新苏教版小学信息技术六年级上册教案机器人教案
- Minitab全面培训教程(最新完整版)
- 配电箱(柜)技术协议书范本
- 外研三起五年级上册英语Module10-Unit-1-He-was-in-the-kitchen教案
- 水的组成教学设计
- 刑释解教人员重新违法犯罪情况的调查分析及预防对策
- 茶文化ppt英文版
- 导管室工作总结(共4篇)
评论
0/150
提交评论