版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
StorageFuturesStudy
KeyLearningsfortheComingDecades
NateBlair,ChadAugustine,WesleyCole,PaulDenholm,WillFrazier,MadelineGeocaris,JennieJorgenson,KevinMcCabe,KaraPodkaminer,AshreetaPrasanna,BenSigrin
StorageFuturesStudy
KeyLearningsfortheComingDecades
NateBlair,ChadAugustine,WesleyCole,PaulDenholm,WillFrazier,MadelineGeocaris,JennieJorgenson,KevinMcCabe,KaraPodkaminer,AshreetaPrasanna,BenSigrin
SUGGESTEDCITATION
Blair,Nate,ChadAugustine,WesleyCole,etal.2022.StorageFuturesStudy:KeyLearningsfortheComingDecades.Golden,CO:NationalRenewableEnergyLaboratory.NREL/TP-7A40-81779.
/docs/fy22osti/81779
StorageFuturesStudy:KeyLearningsfortheComingDecades|iii
NOTICE
ThisworkwasauthoredinpartbytheNationalRenewableEnergyLaboratory,operatedbyAllianceforSustainableEnergy,LLC.fortheU.S.DepartmentofEnergy(DOE)underContractNo.DE-AC36-08GO28308.SupportfortheworkwasalsoprovidedbytheInterstateRenewableEnergyCouncil,Inc.underAgreementSUB-2021-10440.TheviewsexpressedinthearticledonotnecessarilyrepresenttheviewsoftheDOEortheU.S.Government.TheU.S.Governmentretainsandthepublisher,byacceptingthearticleforpublication,acknowledgesthattheU.S.Governmentretainsanonexclusive,paid-up,irrevocable,worldwidelicensetopublishorreproducethepublishedformofthiswork,orallowotherstodoso,forU.S.Governmentpurposes.
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at
/publications.
U.S.DepartmentforEnergy(DOE)reportsproducedafter1991andagrowingnumberofpre-1991documentsareavailablefreevia
www.OSTI.gov
.
StorageFuturesStudy:KeyLearningsfortheComingDecades|iii
PREFACE
ThisreportistheseventhandfinalpublicationfromtheNationalRenewableEnergyLaboratory’s(NREL’s)StorageFuturesStudy(SFS).TheSFSisamultiyearresearchprojectthatexploreshowenergystoragecouldimpacttheevolutionandoperationoftheU.S.powersector.
Thestudyexaminedtheimpactofenergystoragetechnologyadvancementonthedeploymentofutility-scalestorageandtheadoptionofdistributedstorage,aswellasfuturepowersysteminfrastructureinvestmentandoperations.SomeofthequestionsNRELsoughttoanswerthroughoutthisstudyincluded:
Howmightstoragecostandperformancechangeovertime?
Whatistheroleofdiurnalenergystorageinthepowersector,evenabsentdriversorpoliciesthatincreaserenewableenergyshares?
HowmuchdiurnalgridstoragemightbeeconomicallydeployedintheUnitedStates,bothattheutility-scaleanddistribution-scale?
Whatfactorsmightdrivethatdeployment?
Howmightincreasedlevelsofdiurnalstorageimpactgridoperations?
Researchfindingsandsupportingdatafromthestudyhavebeenpublishedinaseriesofsevenpublications,whicharelistedinthetableonthenextpage.Keylearningsfromthroughoutthestudyhaveculminatedinthisfinalreportthathelpsshapethevisionofenergystoragemovingforward.
TheSFSseriesprovidesdataandanalysisinsupportoftheU.S.DepartmentofEnergy’s(DOE’s)
EnergyStorageGrand
Challenge
,acomprehensiveprogramtoacceleratethedevelopment,commercialization,andutilizationofnext-generationenergystoragetechnologiesandsustainAmericangloballeadershipinenergystorage.TheEnergyStorageGrandChallengeemploysause-caseframeworktoensurestoragetechnologiescancost-effectivelymeetspecificneeds,anditincorporatesabroadrangeoftechnologiesinseveralcategories:electrochemical,electromechanical,thermal,flexiblegeneration,flexiblebuildings,andpowerelectronics.
Moreinformation,supportingdataassociatedwiththisreport,linkstootherreportsintheseries,andotherinformationaboutthebroaderstudyareavailableat
/analysis/storage-futures.html.
iv|StorageFuturesStudy:KeyLearningsfortheComingDecades
Table1
StorageFutureStudySeriesReports
Title
Description
RelationtoThisReport
TheFourPhasesof
Explorestherolesandopportunitiesfornew,
Providesbroadercontexton
StorageDeployment:
cost-competitivestationaryenergystorage
theimplicationsofthecostand
AFrameworkforthe
withaconceptualframeworkbasedonfour
performancecharacteristicsdiscussed
ExpandingRoleof
phasesofcurrentandpotentialfuturestorage
inthisreport,includingspecificgrid
StorageintheU.S.Power
deploymentandpresentsavaluepropositionfor
servicestheymayenableinvarious
System(Denholmetal.
energystoragethatcouldresultincost-effective
phasesofstoragedeployment.This
2020)
deploymentsreachinghundredsofgigawattsofinstalledcapacity.
frameworkissupportedbytheresultsofscenariosinthisproject.
EnergyStorage
Reviewsthecurrentcharacteristicsofa
Providesdetailedbackgroundabout
TechnologyModeling
broadrangeofmechanical,thermal,and
thebatteryandpumpedstorage
InputDataReport
electrochemicalstoragetechnologieswith
hydropowercostandperformance
(Augustineetal.2021)
applicationtothepowersector.Providescurrentandfutureprojectionsofcost,performancecharacteristics,andlocationalavailabilityofspecificcommercialtechnologiesalreadydeployed,includinglithium-ionbatterysystemsandpumpedstoragehydropower.
valuesusedasinputstothemodelingperformedinthisproject.
EconomicPotentialof
Assessestheeconomicpotentialforutility-scale
Thisreportfeaturesaseriesofcost-
DiurnalStorageinthe
diurnalstorageandtheeffectsthatstorage
drivengrid-scalecapacityexpansion
U.S.PowerSector(Frazier
capacityadditionscouldhaveonpowersystem
scenariosfortheU.S.gridthrough2050
etal.2021)
evolutionandoperations.
andexaminesthedriversforstoragedeployment.
DistributedStorage
Assessesthecustomeradoptionofdistributed
Analyzesdistributedstorageadoption
CustomerAdoption
diurnalstorageforseveralfuturescenariosand
scenariostotestthevariouscost
Scenarios(Prasannaet
theimplicationsforthedeploymentofdistributed
trajectoriesandassumptionsinparallel
al.2021)
generationandpowersystemevolution.
tothegridstoragedeployments
modeledinthisreport.
TheChallengesof
Describesthechallengeofasingleuniform
Advancesdialoguearoundthemeaning
DefiningLong-Duration
definitionforlong-durationenergystorageto
oflong-durationenergystorageand
EnergyStorage
reflectbothdurationandapplicationofthe
howitfitsintofuturepowersystems.
(Denholmetal.2021)
storedenergy.
GridOperational
Assessestheoperationandassociatedvalue
Considerstheoperationalimplicationsof
Implicationsof
streamsofenergystorageforseveralpower
storagedeploymentandgridevolution
WidespreadStorage
systemevolutionscenariosandexplores
scenariostoexamineandexpandonthe
Deployment(Jorgenson
theimplicationsofseasonalstorageongrid
grid-scalescenarioresultsfoundwith
etal.2022)
operations.
NREL’sRegionalEnergyDeploymentSystemmodelinthisreport.
StorageFuturesStudy:
Synthesizesandsummarizesfindingsfromthe
Thisreport.
KeyLearningsForthe
entireseriesandrelatedanalysesandreports
ComingDecades
andidentifiestopicsforfurtherresearch.
StorageFuturesStudy:KeyLearningsfortheComingDecades|v
ACKNOWLEDGMENTS
WewouldliketoacknowledgethecontributionsoftheentireStorageFuturesStudyteam(listedascoauthors)forthisreport,aswellasourDOEOfficeofStrategicAnalysiscolleaguesascorecontributors,specificallyKaraPodkaminer,PaulSpitsen,andSarahGarman.FeedbackandcontributionsalsocamefromotherNRELstaff,includingGianPorro,DougArent,KarlynnCory,AdamWarren,ChadHunter,EvanReznicek,MichaelPenev,GregStark,VigneshRamasamy,DavidFeldman,GregBrinkman,andTrieuMai.Wealsowouldliketothankourtechnicalreviewcommittee(seeTable2)fortheirinput.
Finally,weacknowledgevarioustechnicalexpertsatDOE,includingEricHsieh,AlejandroMoreno,andmanyothers,fortheiradditionalthoughtsandsuggestionsthroughouttheStorageFuturesStudy,asnotedintheindividualreports.
Table2
TechnicalReviewCommitteeMembers
DougArent
(NREL)–TRCChair
PaulAlbertus
(UniversityofMaryland)
InezAzevedo
(StanfordUniversity)
RyanWiser
(LawrenceBerkeley
NationalLaboratory)
SueBabinec(ArgonneNationalLaboratory)
AaronBloom
(NextEra)
ChrisNamovicz
(U.S.EnergyInformation
Administration)
HowardGruenspecht
(MassachusettsInstitute
ofTechnology)
ArvindJaggi
(NYIndependentSystemOperator)
KeithParks
(XcelEnergy)
KiranKumaraswamy
(Fluence)
GrangerMorgan(CarnegieMellonUniversity)
CaraMarcy
(U.S.Environmental
ProtectionAgency)
MaheshMorjaria
(TerabaseEnergy)
OliverSchmidt(ImperialCollege-London)
VincentSprenkle
(PacificNorthwest
NationalLaboratory)
JohnGavan(ColoradoPUCCommissioner)
vi|StorageFuturesStudy:KeyLearningsfortheComingDecades
LISTOF
BESS
DOE
DR
FC
GW
GWh
H2
H2Elec-saltcavern-CT
H2Elec-saltcavern-FC
kW
kWh
LIB
NG
NREL
PV
RE
SFS
VRE
ACRONYMS
—batteryenergystoragesystem(s)
—U.S.DepartmentofEnergy
—distributedresource
—fuelcell
—gigawatts
—gigawatt-hour
—hydrogen(asastoragefluid)
—hydrogenstorageusingelectrolyzers,saltcaverns,andcombustionturbines
—hydrogenstorageusingelectrolyzers,saltcaverns,andstationaryfuelcells
—kilowatt
—kilowatt-hour(eitheraunitofenergyoraunitofstoragecapacity)
—lithium-ionbattery
—naturalgas
—NationalRenewableEnergyLaboratory
—photovoltaics
—renewableenergy
—StorageFuturesStudy
—variablerenewableenergy
StorageFuturesStudy:KeyLearningsfortheComingDecades|vii
TABLEOFCONTENTS
TheComingDecadesofEnergyStorageDeployment 1
KEYLEARNING1:StorageIsPoisedforRapidGrowth 3
KEYLEARNING2:RecentStorageCostReductionsAreProjectedToContinue,withLithium-IonBattery
ContinuingToLeadinMarketShareforSomeTime 4
KEYLEARNING3:TheAbilityofStorageToProvideFirmCapacityIsaPrimaryDriver
forCost-CompetitiveDeployment 7
KEYLEARNING4:StorageIsNottheOnlyFlexibilityOption,butItsDecliningCostsHaveChanged
WhenItIsDeployedVersusOtherOptions 8
KEYLEARNING5:StorageandPVComplementEachOther 10
KEYLEARNING6:CostReductionsandtheValueofBackupPowerIncreasetheAdoptionof
Building-levelStorage 12
KEYLEARNING7:StorageDurationsWillLikelyIncreaseasDeploymentsIncrease 13
KEYLEARNING8:SeasonalStorageTechnologiesBecomeEspeciallyImportantfor100%
CleanEnergySystems 14
ConclusionsandRemainingUncertainties 16
References 18
viii|StorageFuturesStudy:KeyLearningsfortheComingDecades
LISTOFFIGURES
Figure1.Nationalstoragecapacityinthereferencecasegrowstoabout200GWby2050,
deployingarangeofdurations(left)
3
Figure2.Lithium-ionbatterypackcostshavedroppedbymorethan80%overthepastdecadeand
areexpectedtocontinuetofallbasedoncontinuedscaleofproduction,drivenlargelybyelectric
vehicledemand
4
Figure3.Theutility-scaleBESSReferenceScenarioprojectscontinuedcostreductions 5
Figure4.Capitalcostforenergy($/kWh)versuscapitalcostforcapacity($/kW)
forvarioustechnologies
6
Figure5.Restrictingservicesthatstoragecanprovideshowscapacityservicesaremoreimportant
thantime-shiftingoroperatingreservestoachievestorage’smaximumpotential 7
Figure6.Theflexibilitysupplycurve
8
Figure7.Increasingloadflexibilityandresponsivedemandreducestheneedforstorage
capacityin2050forthelowREcostandlowRE/batterycostscenarioswithandwithout
highdemandresponsecontribution
9
Figure8.IncreaseddeploymentofPVdemonstratesthereduceddurationofnetloadpeaks 10
Figure9.IncreaseddeploymentofPVdemonstratesthereduceddurationrequiredfor
energystoragetoprovidefirmcapacity
10
Figure10.Nationalpeakingcapacitypotentialfordiurnalstorage(upto12hours)asafunction
ofPVcontribution(left)andnationaldiurnalenergytime-shiftingpotentialasafunction
ofPVcontribution(right)
11
Figure11.Storagecapacityasafunctionofrenewableenergycontribution(%) 11
Figure12.Projectedadoptionofdistributedstorage(GWof2-hourdurationstoragesystemscoupledwith
PV)increasesovertimeascostsdecrease,withasignificantjumpiftherearebreakthroughPVcosts 12
Figure13.Asstoragedeploymentincreases,thenetloadpeakwidens,requiringlonger-duration
storagetoprovidefirmcapacity
13
Figure14.Theaveragedurationofnewstoragedeploymentsincreasesasthetotalamountof
storagecapacitygrows,uptoapproximately200GW(usingreferencestoragecosts) 13
Figure15.Seasonalmismatchofrenewableenergysupplyandelectricitydemand
demonstratesthepotentialopportunityforseasonalstorage
14
Figure16.Capacityandgenerationin2050forthescenariosthatreachthe100%requirement 15
LISTOFTABLES
Table1.StorageFutureStudySeriesReports
v
Table2.TechnicalReviewCommitteeMembers
vi
StorageFuturesStudy:KeyLearningsfortheComingDecades|ix
THECOMINGDECADESOFENERGYSTORAGEDEPLOYMENT
Energystorageisverylikelytobecomeacriticalelementofalow-carbon,flexible,resilientfutureelectricgrid.
Inthepastseveralyears,therehasbeenadramaticincreaseofvariablerenewablegenerationintheU.S.powersector,andsignificantgrowthisanticipatedinthefuture.Inaddition,therehasbeenincreasedfocusintheUnitedStatesandgloballyonaddressingnumerousinstancesofpowersystemdisruptionsandincreasedfocusonresearchandanalysisonpowersystemreliabilityandresiliencywithincreasingamountsofvariablerenewablepower—emphasizingtheimportanceofcleanenergydeploymentwhilemaintainingareliablepowersystem.
Atthesametime,therehavebeensignificantcostdeclinesinenergystoragetechnologies(particularlybatteries)overthepastfewyears,andmanymorestoragetechnologiesareunderdevelopment.Theseconvergingfactorshaveincreasedattentiononthepotentialroleofenergystorageasacriticalassetfordecarbonizationandtoensurereliableelectricityfortheevolvinggrid.
Energystorageoffersmanypotentialbenefitstothegrid.ItcouldprovidegenerationtocomplementthedeploymentofwindandsolarPV,providingcapacitywhentheseresourceshavereducedavailability.Whenusedinconjunctionwithrenewableenergy(RE)orothercleanenergyresources,energystoragehastheabilitytoreducegreenhousegasemissions.
Energystoragecanalsoincreaseutilizationofnewandexistingtransmissionlines,whileoffsettingtheneedtobuildnewpowerplantstoprovidepeakingcapacityoroperatingreserves.Finally,distributedenergystoragecanreducestressonthedistributiongridduringpeakdemandtimes.Thisflexibilitywillbeimportantwiththeanticipatedproliferationofelectricvehiclesandpotentialincreasedloadfromotherend-useelectrification.
Asthecostofenergystoragetechnologiescontinuestodeclineandthegridintegratesmorevariablerenewablegeneration,ourmodelingindicatessignificantincreaseddeploymentofenergystoragedeploymentintheelectricsysteminthecomingdecades.Questionsarise,suchashowcouldthisimpacthowthegridoperatesandevolvesoverthecomingdecades?
Becauseenergystoragecanimpactfeaturesofelectricitygeneration,transmission,anddistribution,quantifyingthevalueofstorageismorecomplicatedthanquantifyingthevalueofotherassetslikesolarPVorwindenergythatarepurelygeneration.ThroughtheStorageFuturesStudy(SFS),theNationalRenewableEnergyLaboratory(NREL)hasaimedtoincreaseunderstandingofhowstorageaddsvalue,andhowmuch,tothepowersystem,howmuchstoragecouldbeeconomicallydeployed,andhowthatdeploymentmightimpactpowersystemevolutionandoperations.
TheStorageFuturesStudystartedwithdefining
aframeworkoffourphasesofincreasingenergy
storagedeploymentanddurationovertime,moved
1|StorageFuturesStudy:KeyLearningsfortheComingDecades
StorageFuturesStudy:KeyLearningsfortheComingDecades|2
ontocreateasetoflong-termprojectionsfordiurnal(<12hours)storagedeploymentintheUnitedStates,andthenapplieddetailedproductioncostandagent-basedmodelingtobetterunderstandtheroleofstorage.Thekeyconclusionoftheresearchisthatdeploymentofenergystoragehasthepotentialtoincreasesignificantly—reachingatleastfivetimestoday’scapacityby2050—anditwillplayanintegral
roleindeterminingthecost-optimalgridmixofthefuture.DrawingontheanalysisacrosstheSFS,previouswork,andadditionalanalysisforthisreport,thestudyidentifiedeightspecifickeylearningsaboutthefutureofenergystorageanditsimpactonthepowersystem.Thesekeylearningscanhelppolicymakers,technologydevelopers,andgridoperatorsprepareforthecomingwaveofstoragedeployment:
KEYLEARNING1:
Storageispoisedforrapidgrowth.
KEYLEARNING2:
Recentstoragecostreductionsareprojectedtocontinue,withlithium-ionbatteries(LIBs)continuingtoleadinmarketshareforsometime.
KEYLEARNING3:
Theabilityofstoragetoprovidefirmcapacityisaprimarydriverofcost-competitivedeployment.
KEYLEARNING4:
Storageisnottheonlyflexibilityoption,butitsdecliningcostshavechangedwhenitisdeployedversusotheroptions.
KEYLEARNING5:
Storageandphotovoltaics(PV)complementeachother.
KEYLEARNING6:
Costreductionsandthevalueofbackuppowerincreasetheadoptionofbuilding-levelstorage.OPTIONOFBUILDING-LEVELSTORAGE.
KEYLEARNING7:
Storagedurationswilllikelyincreaseasdeploymentsincrease.
KEYLEARNING8:
Seasonalstoragetechnologiesbecomeespeciallyimportantfor100%cleanenergysystems.
Eachofthefollowingsectionsprovidesadditionalinsightsintotheeightkeylearnings,andweconcludewithremaininguncertaintiesthatcouldbeexploredtofurtheradvanceunderstandingoftheroleofstorageintheevolvingU.S.powergrid.
KEYLEARNING1
StorageIsPoisedforRapidGrowth
TheSFSreportEconomicPotentialofDiurnalStorageintheU.S.PowerSector(Frazieretal.2021)demonstratesthegrowingcost-competitivenessofenergystorage.Usingastate-of-the-artnational-scalecapacityexpansionmodel,wefindthatdiurnalstorage(<12hoursofduration)iseconomicallycompetitiveacrossavarietyofscenarioswitharangeofcostandperformanceassumptionsforstorage,wind,solarPV,andnaturalgas(NG).
Figure1illustratesthatacrossallscenarios,deploymentsofnewstoragerangesfrom100to650gigawatts(GW)ofnewcapacity.
Thislargerangeisdrivenbyavarietyoffactors,includingstoragecosts(KeyLearning2),naturalgasprices,andrenewableenergycostadvancement,buteventhemostconservativecaserepresentsafivefoldincreasecomparedtotheinstalledstoragecapacityof23GWin2020(themajorityofwhichispumpedstoragehydropower).
Itisimportanttonotethatsignificantdeploymentsofbothrenewableenergyandstoragearedeployedevenwithoutadditionalcarbonpolicies,demonstratingtheirincreasingcost-competitivenessasresourcesforprovisionofenergyandcapacityservices.
Modeledscenariosresultinsignificant,butnotcomplete,decarbonization,wherepowersectoremissionsarereducedby46%–82%comparedto2005,andvariablerenewableenergy(VRE)reachessharesof43%–81%nationallyby2050.Durationswith4–6hoursarethemostcommon,drivenbytheinherentsynergywithPV(KeyLearning5),butlongerdurationsareoftendeployedinthelatermodeledyears(KeyLearning7).TheprimarydriversbehindstoragegrowthandtheevolutionofstoragedevelopmentwereexploredinFrazieretal.(2021)andotherSFSreports—ashighlightedinthefollowingkeylearnings.
Figure1.Nationalstoragecapacityinthereferencecasegrowstoabout200GWby2050,deployingarangeofdurations(left)Thistranslatestoabout1,200gigawatt-hours(GWh)ofstoredenergy(right),withawiderangeofdeployments.
3|StorageFuturesStudy:KeyLearningsfortheComingDecades
StorageFuturesStudy:KeyLearningsfortheComingDecades|4
KEYLEARNING2
RecentStorageCostReductionsAreProjectedToContinue,with
Lithium-IonBatteryContinuingToLeadinMarketShareforSomeTime
TheSFSreportEnergyStorageTechnologyModelingInputDataReportdiscussesthefuturecostprojectionsforutility-scalebatteryenergystoragesystemsandothertechnologiesthatdrivemuchoftheanticipatedgrowthidentifiedinKeyLearning1.
Mostofthestationarystoragedeploymentsthatwilloccurintheneartermareexpectedtobeintheformofbatteries,particularlyLIBs.ThedominanceofLIBs,atleast
inthenearterm,hasbeendrivenbygrowthofthistechnologyacrossmultiplemarkets,includingconsumerelectronics,stationaryapplications,andespeciallyelectricvehicles.
Figure2providesanexampleofhistoricalandprojectedfuturecostsoflithium-ionbatterypacks,illustratingarapiddeclineinrecentyears.Thechartalsoshowsthevastmajorityofbatterydeploymentsarefortransportationapplications,whichwill
likelybethemostimportantdriversofbatterytechnologydevelopmentandbatterycostdeclinesingeneral.
Weusedavarietyoffuturecostprojectionsforutility-scalestationarybatteryenergystoragesystems(BESS)toevaluatetotalsystemcost,includinginverter,balanceofsystem,andinstallation.Anexampleofacostprojectionforbatterieswith2–10hoursofusabledurationthatisusedintheSFSreferencescenarioisshowninFigure3.
Figure2.Lithium-ionbatterypackcostshavedroppedbymorethan80%overthepastdecadeandareexpectedto
continuetofallbasedoncontinuedscaleofproduction,drivenlargelybyelectricvehicledemand.
2021valuesfromBloombergNEF3are$132/kW.DataSource:FrithandGoldie-Scot2019
3“BatteryPackPricesFalltoanAverageof$132/kWh,ButRisingCommodityPricesStarttoBite,”BloombergNEF,November30,2021,
/blog/
battery-pack-prices-fall-to-an-average-of-132-kwh-but-rising-commodity-prices-start-to-bite/
.
Figure3.Theutility-scaleBESSReferenceScenarioprojectscontinuedcostreductions.Theleftpanelmeasurescostona$/kWh(usableenergy)basis,whiletherightpanelmeasurescostsbasedon$/kW(maximumdirectcurrent[DC]outputpower).Projectionsassumea60-megawattDCproject.
Theleftcurveshowsthetotalcostperinstalledkilowatt-hour(kWh)ofusablecapacity,whichisacommonmeasureusedinthebatteryindustry.Thisisthetotalcostofinstallation,whichforstationaryapplicationsincludesboththepower-relatedcosts(associatedwiththeequipmentthatconvertsgridelectricityintostoredelectricityandbackagain)andtheenergy-relatedcosts(thestoragemedium).Thepower-relatedcoststypicallydonotscalewithduration,meaningtheyarethesamefora2-hoursystemanda10-hoursystem,whichiswhythecostsperkWhdecreaseasdurationincreases(powercostsaredividedoveralargernumberofkWh).(ThisbreakdownofcostsforpoweranddurationisillustratedinFigure4.)Therightcurveshowsthecostperkilowatt(kW),whichisamoreconventionalmeasureofpowerplantcostsusedintheutilityindustry.Bythismeasure,costsin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 轻松培养小学生英语兴趣的实践经验
- 追及问题奥数六年级难点
- 道路照明设备招标
- 配电工程招标文件获取
- 酒店客房人力资源外包
- 重新出发严守纪律的保证书
- 鉴定人保证书的法律效力解析
- 钢管架工程分包劳务协议
- 铜管配件采购合同
- 钢质门窗招标文件
- 事业单位工作人员个人简历表
- 口腔诊所患者投诉制度范本
- 《管道支架安装》
- 国开(中央电大)本科《数学思想与方法》网上形考、机考试题及答案
- 3.4《测量降水量 》教学设计
- 医学伦理学试题+参考答案
- 市政道路工程安全策划书(含图表)
- 2023年江西省普通高考《通用技术》真题试卷(后附答案)
- 教师资格面试-75篇结构化逐字稿
- 与世界深度互动=部编版道德与法治九年级下册
- 痛风性关节炎(课件)
评论
0/150
提交评论