初中数学圆总复习课件_第1页
初中数学圆总复习课件_第2页
初中数学圆总复习课件_第3页
初中数学圆总复习课件_第4页
初中数学圆总复习课件_第5页
已阅读5页,还剩109页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初中数学圆总复习课件第一页,共114页。初中数学圆总复习卷柏2014年2月第二页,共114页。知识体系圆基本性质直线与圆的位置关系圆与圆的位置关系概念对称性垂径定理圆心角、弧、弦之间的关系定理圆周角与圆心角的关系切线的性质切线的判定切线的作图弧长、扇形面积和圆锥的侧面积相关计算正多边形和圆位置分类性质关系定理有关计算切线长定理判定第三页,共114页。圆的有关性质第四页,共114页。圆的定义(运动观点)在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆。固定的端点O叫做圆心,线段OA叫做半径,以点O为圆心的圆,记作☉O,读作“圆O”第五页,共114页。圆的定义辨析篮球是圆吗?圆必须在一个平面内以3cm为半径画圆,能画多少个?以点O为圆心画圆,能画多少个?由此,你发现半径和圆心分别有什么作用?半径确定圆的大小;圆心确定圆的位置圆是“圆周”还是“圆面”?圆是一条封闭曲线圆周上的点与圆心有什么关系?第六页,共114页。圆的定义(集合观点)圆是到定点的距离等于定长的点的集合。圆上各点到定点(圆心)的距离都等于定长(半径);到定点的距离等于定长的点都在圆上。一个圆把平面内的所有点分成了多少类?你能模仿圆的集合定义思想,说说什么是圆的内部和圆的外部吗?第七页,共114页。点与圆的位置关系圆是到定点(圆心)的距离等于定长(半径)的点的集合。圆的内部是到圆心的距离小于半径的点的集合。圆的外部是到圆心的距离大于半径的点的集合。由此,你发现点与圆的位置关系是由什么来决定的呢?如果圆的半径为r,点到圆心的距离为d,则:点在圆上

d=r

点在圆内

d<r

点在圆外

d>r第八页,共114页。与圆有关的概念弦和直径什么是弦?什么是直径?直径是弦吗?弦是直径吗?弧与半圆什么是圆弧(弧)?怎样表示?弧分成哪几类?半圆是弧吗?弧是半圆吗?弓形是什么?同心圆、同圆、等圆和等弧怎样的两个圆叫同心圆?怎样的两个圆叫等圆?同圆和等圆有什么性质?什么叫等弧?第九页,共114页。圆的有关性质过三点的圆第十页,共114页。思考:确定一条直线的条件是什么?类比联想:是否也存在由几个点确定一个圆呢?讨论:经过一个点,能作出多少个圆? 经过两个点,如何作圆,能作多少个? 经过三个点,如何作圆,能作多少个?第十一页,共114页。经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,三角形叫做圆的内接三角形。问题1:如何作三角形的外接圆?如何找三角形的外心?问题2:三角形的外心一定 在三角形内吗?∠C=90°▲ABC是锐角三角形▲ABC是钝角三角形第十二页,共114页。垂直于弦的直径及其推论第十三页,共114页。从特殊到一般想一想:将一个圆沿着任一条直径对折,两侧半圆会有什么关系?性质:圆是轴对称图形,任何一条直径所在的直线都是它的对称轴。观察右图,有什么等量关系?垂直于弦的直径AO=BO=CO=DO,弧AD=弧BC,弧AC=弧BD。AO=BO=CO=DO,弧AD=弧BC=弧AC=弧BD。AO=BO=CO=DO,弧AD=弧BD,弧AC=弧BC,AE=BE

。第十四页,共114页。垂径定理垂径定理

垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。第十五页,共114页。判断下列图形,能否使用垂径定理?注意:定理中的两个条件(直径,垂直于弦)缺一不可!定理辨析第十六页,共114页。练习OABE若圆心到弦的距离用d表示,半径用r表示,弦长用a表示,这三者之间有怎样的关系?第十七页,共114页。变式1:AC、BD有什么关系?变式2:AC=BD依然成立吗?变式3:EA=____,EC=_____。FDFB变式4:______ AC=BD.OA=OB变式5:______ AC=BD.OC=OD变式练习第十八页,共114页。如图,P为⊙O的弦BA延长线上一点,PA=AB=2,PO=5,求⊙O的半径。MAPBO辅助线关于弦的问题,常常需要过圆心作弦的垂线段,这是一条非常重要的辅助线。圆心到弦的距离、半径、弦长构成直角三角形,便将问题转化为直角三角形的问题。第十九页,共114页。画图叙述垂径定理,并说出定理的题设和结论。题设结论①直线CD经过圆心O②直线CD垂直弦AB③直线CD平分弦AB④直线CD平分弧ACB⑤直线CD平分弧AB想一想:如果将题设和结论中的5个条件适当互换,情况会怎样?①③②④⑤②③①

④⑤①④②③

⑤②④①③

⑤①②⑤①②④④⑤①②③③④③⑤第二十页,共114页。 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦并且平分弦所对的另一条弧。推论1第二十一页,共114页。如图,CD为⊙O的直径,AB⊥CD,EF⊥CD,你能得到什么结论?推论2弧AE=弧BF圆的两条平行弦所夹的弧相等。FOBAECD第二十二页,共114页。圆心角、弧、弦、

弦心距之间的关系第二十三页,共114页。圆的性质圆是轴对称图形,每一条直径所在的直线都是对称轴。圆是以圆心为对称中心的中心对称图形。圆还具有旋转不变性,即圆绕圆心旋转任意一个角度α,都能与原来的图形重合。第二十四页,共114页。圆心角:顶点在圆心的角。(如:∠AOB)C弦心距:从圆心到弦的距离。(如:OC)OAB相关定义第二十五页,共114页。猜想与证明如图,∠AOB=∠A`OB`,OC⊥AB,OC`⊥A`B`。猜想:弧AB与弧A`B`,AB与A`B`,OC与OC`之间的关系,并证明你的猜想。定理

相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。在同圆或等圆中,OABCA'B'C'第二十六页,共114页。圆心角所对的弧相等,圆心角所对的弦相等,圆心角所对弦的弦心距相等。推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。题设结论在同圆或等圆中(前提)圆心角相等(条件)定理推论第二十七页,共114页。1°圆心角1°弧CDn°圆心角n°弧把顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角。1°的圆心角所对的弧叫做1°的弧。圆心角的度数和它所对的弧的度数相等。一般地,n°的圆心角对着n°的弧。弧的度数第二十八页,共114页。圆周角第二十九页,共114页。CDF圆心角:如∠BOA圆内角:如∠BCA圆周角:如∠BDA圆外角:如∠BFA角的顶点在圆心角的顶点在圆周上是否顶点在圆周上的角就是圆周角呢?动起来!第三十页,共114页。圆周角:顶点在圆上,并且两边都和圆相交的角。圆心角:顶点在圆心的角.看清要点第三十一页,共114页。画图:同一条弧所对的圆周角和圆心角之间可能出现哪几种不同的位置关系?大胆猜想回顾:圆周角等于它所对的弧的度数的一半。猜想:圆周角和圆心角都是与圆有关的角,它们之间有什么关系?第三十二页,共114页。一条弧所对的圆周角等于它所对的圆心角的一半定理化归化归圆周角定理分类讨论完全归纳法数学思想第三十三页,共114页。1、已知∠AOB=75°,求:∠ACB2、已知∠AOB=120°,求:∠ACB3、已知∠ACD=30°,求:∠AOB4、已知∠AOB=110°,求:∠ACB第三十四页,共114页。推论定理:一条弧所对的圆周角等于它所对的圆心角的一半。也可以理解为:一条弧所对的圆心角是它所对的圆周角的二倍;圆周角的度数等于它所对的弧的度数的一半。弧相等,圆周角是否相等?反过来呢?什么时候圆周角是直角?反过来呢?直角三角形斜边中线有什么性质?反过来呢?第三十五页,共114页。OBADEC如图,比较∠ACB、∠ADB、∠AEB的大小同弧所对的圆周角相等如图,如果弧AB=弧CD,那么∠E和∠F是什么关系?反过来呢?DCEBFAO等弧所对的圆周角相等;在同圆中,相等的圆周角所对的弧也相等DCEO1BFAO2如图,⊙O1和⊙O2是等圆,如果弧AB=弧CD,那么∠E和∠F是什么关系?反过来呢?等圆也成立第三十六页,共114页。推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等。思考:1、“同圆或等圆”的条件能否去掉?2、判断正误:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦心距、两个圆周角中有一组量相等,那么它们所对应的其余各组量也相等。FED第三十七页,共114页。关于等积式的证明如图,已知AB是⊙O的弦,半径OP⊥AB,弦PD交AB于C,求证:PA2=PC·PDCDPBAO经验:证明等积式,通常利用相似;找角相等,要有找同弧或等弧所对的圆周角的意识;第三十八页,共114页。推论2 半圆(或直径)所对的圆周角是90°;90°的圆周角所对的弦是直径。推论3 如果三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形。什么时候圆周角是直角?反过来呢?直角三角形斜边中线有什么性质?反过来呢?第三十九页,共114页。已知:点O是ΔABC的外心,∠BOC=130°,求∠A的度数。第四十页,共114页。直线和圆的位置关系重点内容第四十一页,共114页。直线和圆的位置关系及其性质位置关系相交相切相离公共点个数d与r的关系公共点名称直线名称2个1个无d<rd=rd>r交点切点割线切线有且仅有注意:“”,即“等价于”熟记第四十二页,共114页。直线和圆的位置关系的判定d与r的关系位置关系交点个数图形2个1个无d<rd=rd>r相交相离相切熟记第四十三页,共114页。切线的判定重点内容第四十四页,共114页。判断一条直线是不是圆的切线使用定义:直线和圆有唯一的公共点圆心到直线的距离d等于半径r时,直线和圆相切说说看:以上两种判断办法是否方便应用呢?操作:画⊙O,在⊙O上任取一点A,连结OA,过A点作直线l⊥OA直线l是否与⊙O相切呢?从作图过程看,这条切线l满足哪些条件?

l经过半径外端

l垂直于这条半径穷则思变第四十五页,共114页。切线的判定定理:

经过半径的外端并且垂直于这条半径的直线是圆的切线。已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB。求证:直线AB是⊙O的切线。OCBA已知:OA=OB=5厘米,AB=8厘米,⊙O的直径6厘米。求证:AB与⊙O相切。以上两题辅助线的作法是否相同?你分析出了什么结论?辅助线技巧第四十六页,共114页。证明一条直线是圆的切线,常常需要作辅助线。若直线过圆上某一点,则连结圆心和公共点,再证明直线与半径垂直。(即连半径,正垂直)若直线与圆的公共点没有确定,则过圆心向直线作垂线,再证明圆心到直线的距离等于半径。(即作垂线,正半径)OBA练兵第四十七页,共114页。切线判定的方法利用切线定义利用圆心到直线的距离等于半径利用切线判断定理辅助线技巧:若直线过圆上某一点,则连结圆心和公共点,再证明直线与半径垂直若直线与圆的公共点没有确定,则过圆心向直线作垂线,再证明圆心到直线的距离等于半径。Review第四十八页,共114页。切线的性质重点内容第四十九页,共114页。切线判定:直线l:①过半径外端②垂直于半径切线性质:切线l,A为切点:OA⊥l理解记忆类比猜想切线的性质定理:圆的切线垂直于经过切点的半径。第五十页,共114页。切线判定与性质典型例题已知:AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD。

求证:DC是⊙O的切线。体会规律如图,在以O为圆心的两个同心圆中,大圆的弦AB和CD相等,且AB与小圆相切于点E,求证:CD与小圆相切。DCOBAFDCBAEO第五十一页,共114页。切线的判定和性质判定切线的三种方法:和圆只有一个公共点的直线是圆的切线和圆心的距离等于半径的直线是圆的切线过半径外端且和半径垂直的直线是圆的切线Review定义本质一样表达不同定理①过圆心②过切点③垂直于切线,随便知两个就可推出第三个切线的主要性质:切线和圆只有一个公共点切线和圆心的距离等于半径切线垂直于过切点的半径经过圆心垂直于切线的直线必过切点经过切点垂直于切线的直线必过圆心主要辅助线:利用切线性质时,常作过切点的半径证明直线是圆的切线时,分清什么时候“连结”,什么时候“作垂线”第五十二页,共114页。三角形的内切圆重点内容第五十三页,共114页。问题如何在一个三角形中剪下一个圆,使得该圆的面积尽可能的大?思考第五十四页,共114页。定义和三角形各边都相切的圆叫做三角形的内切圆;内切圆的圆心叫做三角形的内心;这个三角形叫做圆的外切三角形。三角形的内心是三角形内角平分线的交点。三角形的内心是否也有在三角形内、三角形外或三角形上三种不同情况。记忆第五十五页,共114页。在△ABC中,∠ABC=50°,∠ACB=75°,求∠BOC的度数。

(1)点O是三角形的内心

(2)点O是三角形的外心△ABC中,E是内心,∠A的平分线和△ABC的外接圆相交于点D。求证:DE=DB。ABCODABCE练习关于三角形内心的辅助线:

连结内心和三角形的顶点,该线平分三角形的这一内角。第五十六页,共114页。三角形的各种"心"HeartsofTriangle第五十七页,共114页。

垂心(了解)重心(了解)外心(掌握)内心(掌握)交点性质位置三条高线的交点三条角平分线的交点三边垂直平分线的交点三条中线的交点在形内、形外或直角顶点在形内、形外或斜边中点在形内在形内到三角形各顶点距离相等到三角形三边距离相等把中线分成了2:1两部分第五十八页,共114页。已知△ABC的内切圆半径为r,求证:△ABC的面积S△ABC=sr。(s为△ABC的半周长)第五十九页,共114页。ABCO三角形的外接圆:三角形的内切圆:ABCI第六十页,共114页。OI特殊三角形外接圆、内切圆半径的求法:R=—c2r=————a+b-c2ABCabc直角三角形外接圆、内切圆半径的求法等边三角形外接圆、

内切圆半径的求法基本思路:构造三角形BOD,BO为外接圆半径,DO为内切圆半径。ABCODRr第六十一页,共114页。圆的内接四边形第六十二页,共114页。定理:圆的内接四边形的对角互补。CBADO∠D+∠B=180°∠A+∠C=180°对角第六十三页,共114页。又一种重要的辅助线FEDCBAO2O1如图,⊙O1和⊙O2都经过A、B两点,经过A点的直线CD与⊙O1交于点C,与⊙O2交于点D,经过B点的直线EF与⊙O1交于点E,与⊙O2交于点F。求证:CE∥DF有两个圆的题目常用的一种辅助线:作公共弦。此图形是一个考试热门图形。思考:若此题条件和结论不变,只是不给出图形,此题还能这样证明吗?ECBAO2O1FD第六十四页,共114页。切线长定理第六十五页,共114页。切线长的定义以及定理切线与切线长的区别:切线是直线,不能度量。切线长是线段的长,这条线段的两个端点分别是圆外的一点和切点,可以度量。PA、PB分别切⊙O于A、BPA=PB∠OPA=∠OPB切线长定理:题设:从圆外一点引圆

的两条切线结论:①切线长相等,

②圆心和这一点的连线平分两条切线的夹角几何表述:PBAO第六十六页,共114页。DCPBAO如图,PA、PB是⊙O的两条切线,A、B是切点,直线OP交⊙O于点D,交AB于点C。写出图中所有的垂直关系写出图中所有的全等三角形写出图中所有的相似三角形写出图中所有的等腰三角形若PA=4cm,PD=2cm,求半径OA的长若⊙O的半径为3cm,点P和圆心O的距离为6cm,求切线长及这两条切线的夹角度数第六十七页,共114页。PABOCPO平分∠AOBPO垂直平分ABPO平分弧ABPA=PBPO平分∠APB推广切线长定理第六十八页,共114页。切线长定理的推广

(议一议)四边形ABCD的边AB、BC、CD、DA和⊙O分别相交相切于点L、M、N、P。观察图并结合切线长定理,你发现了什么结论?并证明之。CBADPLMNO圆的外切四边形的两组对边的和相等AB+CD=AD+BC第六十九页,共114页。等腰梯形各边都与⊙O相切,⊙O的直径为6cm,等腰梯形的腰等于8cm,则梯形的面积为_____。圆的外切四边形的两组对边的和相等AB+CD=AD+BC应用举例868CBADPLMNO第七十页,共114页。圆和圆的

位置关系第七十一页,共114页。外离内含两个圆没有公共点,并且每个圆上的点都在另一个圆的外部。两个圆没有公共点,并且每个圆上的点都在另一个圆的内部。d>R+rd<R-rdRrO1O2dRrO1O2第七十二页,共114页。外切内切两个圆有唯一公共点,并且除这公共点外,每个圆上的点都在另一个圆的外部。两个圆有唯一公共点,并且除这公共点外,每个圆上的点都在另一个圆的内部。d=R+rd=R-rdRrO1O2dRrO1O2第七十三页,共114页。相交两个圆有两个公共点。R-r<d<R+rdRrO1O2第七十四页,共114页。从公共点个数看两圆位置关系公共点个数没有公共点(相离)一个公共点(相切)两个公共点(相交)外离内含外切内切两圆位置关系的数量特征d:圆心距R、r:两圆半径(R>r)内含相交外离R+r外切R-r内切第七十五页,共114页。相切两圆、相交两圆的性质对称性单一个圆是轴对称图象,那么由两个圆组成的图形是否有轴对称性质呢?有若,说出对称轴,若没有,说明理由由上述性质,你可以推导出相切两圆、相交两圆分别有什么性质吗?说明理由。第七十六页,共114页。如果两圆相切,那么切点在连心线上。相切两圆的性质第七十七页,共114页。相交两圆的连心线垂直平分公共弦。相交两圆的性质第七十八页,共114页。⊙O1、⊙O2的半径分别为4cm、3cm。两圆交于A、B两点,AB=4.8cm,求O1O2的长。1、在圆和圆的位置关系中经常要解直角三角形。2、注意几何的分类讨论题CBAO1O2CBAO2O1第七十九页,共114页。正多边形和圆圆的内接正n边形

第八十页,共114页。正多边形:各边相等,各角也相等的多边形叫做正多边形。正n边形:如果一个正多边形有n条边,那么这个正多边形叫做正n边形。三条边相等,三个角也相等(60度)四条边都相等,四个角也相等(90度)第八十一页,共114页。想一想:怎样找圆的内接正三角形?

怎样找圆的内接正方形?怎样找圆的内接正n边形?EFGH

ABCD第八十二页,共114页。把圆分成n(n≥3)等份:

依次连结各分点所得的多边形是这个圆的内接正多边形;这个圆叫正多边形的外接圆。

定理第八十三页,共114页。正多边形和圆的有关概念第八十四页,共114页。定理任何正多边形都有一个外接圆。正多边形的外接圆

的圆心叫做正多边形的中心,外接圆的半径叫做正多边形的半径,内切圆的半径叫做正多边形的边心距。正多边形各边所对的外接圆的圆心角叫做正多边形的中心角。正n边形的每个中心角都等于360°/n。第八十五页,共114页。正多边形的性质正多边形是轴对称图形,正n边形有n条对称轴。若n为偶数,则其为中心对称图形。第八十六页,共114页。正多边形的性质各边相等,各角相等圆的内接正n边形的各个顶点把圆分成n等分

每个正多边形都有一个外接圆。外接圆的圆心就是正多边形的中心。正多边形都是轴对称图形,如果边数是偶数那么它还是中心对称图形正n边形的中心角和它的每个外角都等于360°/n,每个内角都等于(n-2)·180°/n正n边形的半径和边心距把正n边形分成2n个全等的直角三角形第八十七页,共114页。求证:各边相等的圆内接多边形是正多边形。思考:各角相等的圆内接多边形是否是正多边形?第八十八页,共114页。正多边形的有关计算第八十九页,共114页。思考什么是正多边形的中心、半径、边心距、中心角?正n边形的内角和、外角和分别是多少?它的每一个内角、外角、中心角分别是多少?作一个正五边形,作出它的半径、中心角、边心距,观察它们之间有何关系?若正多边形的边数为n时,它的边长、半径、中心角、边心距之间的关系如何?怎样做有关的计算?第九十页,共114页。关于正多边形的计算要记牢以下关系:正多边形的边长a、边心距r、半径R之间的关系:正多边形的周长=边长x边数正多边形的面积=x周长x边心距正多边形的中心角=360/n=每一个外角正多边形的每个内角=(n-2)x180/n在a、r、R中已知两个就可求出第三个。第九十一页,共114页。练习已知正六边形ABCDEF的半径为R,求这个正六边形的边长a6、周长P6和面积S6。已知圆的半径为R,求它的内接正三角形、内接正方形的边长、边心距和面积。第九十二页,共114页。画正多边形第九十三页,共114页。思想:画半径为R的正n边形,只要把半径为R的圆n等分。用尺规等分圆(保留痕迹):正四边形正八边形正六边形正三角形正十二边形第九十四页,共114页。圆周长、弧长第九十五页,共114页。圆周长圆周长C与半径R之间的关系:C=2πR第九十六页,共114页。弧长计算公式公式中n和180都不要带单位“度”圆心角的单位必须化为“度”题中没有标明精确度,结果用π表示第九十七页,共114页。皮带轮模型如图,两个皮带轮的中心的距离为2.1m,直径分别为0.65m和0.24m。(1)求皮带长(保留三个有效数字);(2)如果小轮每分钟750转,求大轮每分钟约多少转?如果两个轮是等圆呢?第九十八页,共114页。圆、扇形、弓形的面积第九十九页,共114页。一条弧和经过这条弧的端点的两条半径所组成的图形扇形第一百页,共114页。回忆弧长计算公式的推导过程,你能否相应地推出扇形面积的计算公式呢?扇形面积观察扇形面积公式,你发现它和弧长公式之间有什么关系?怎样才能牢固地记忆这两个公式呢?第一百零一页,共114页。已知正三角形的边长为a,求它的内切圆与外接圆组成的圆环的面积

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论