




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上学期3.3等差数列的前n项和
概要:道的一个故事,高斯的算法非常高明,回忆他是怎样算的.高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,…,每组数的和均相等,都等于101,50个101就等于5050了.高斯算法将加法问题转化为乘法运算,迅速准确得到了结果.我们希望求一般的等差数列的和,高斯算法对我们有何启发?二.讲解新课等差数列前项和公式1.公式推导问题:设等差数列的首项为,公差为,由学生讨论,研究高斯算法对一般等差数列求和的指导意义.思路一:运用根本量思想,将各项用和表示,得,有以下等式,问题是一共有多少个,似乎与的奇偶有关.这个思路似乎进展不下去了.思路二:上面的等式其实就是,为回避个数问题,做一个改写,,两式左右分别相加,得,于是有:.这就是倒序相加法.思路三:受思路二的启发,重新调整思路一,可得,于是.于是得到了两个公式:和.2.公式记忆用梯形面积公式记忆等差数列前项和公式,这里对图形进展了割、补两种处理,对应着等差数列前项和的两个公式.3.公式的应用公式中含有四个量,运用方程的思想,知三求一.例1.求和:;解题的关键是数清项数,小结数项数的方法.例2.等差数列中前多少项的和是9900?此题本质是反用公式
上学期3.3等差数列的前n项和,
教学目的
1.通过教学使学生理解等差数列的前项和公式的推导过程,并能用公式解决简单的问题.
2.通过公式推导的教学使学生进一步体会从特殊到一般,再从一般到特殊的思想方法,通过公式的运用体会方程的思想.
教学重点,难点
教学重点是等差数列的前项和公式的推导和应用,难点是获得推导公式的思路.
教学用具
实物投影仪,多媒体软件,电脑.
教学方法
讲授法.
教学过程
一.新课引入
提出问题:一个堆放铅笔的V形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支.这个V形架上共放着多少支铅笔?
问题就是“〞
这是小学时就知道的一个故事,高斯的算法非常高明,回忆他是怎样算的.高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,…,每组数的和均相等,都等于101,50个101就等于5050了.高斯算法将加法问题转化为乘法运算,迅速准确得到了结果.
我们希望求一般的等差数列的和,高斯算法对我们有何启发?
二.讲解新课
等差数列前项和公式
1.公式推导
问题:设等差数列的首项为,公差为,由学生讨论,研究高斯算法对一般等差数列求和的指导意义.
思路一:运用根本量思想,将各项用和表示,得
,有以下等式
,问题是一共有多少个,似乎与的奇偶有关.这个思路似乎进展不下去了.
思路二:
上面的等式其实就是,为回避个数问题,做一个改写,,两式左右分别相加,得
,
于是有:.这就是倒序相加法.
思路三:受思路二的启发,重新调整思路一,可得,于是.
于是得到了两个公式:和.
2.公式记忆
用梯形面积公式记忆等差数列前项和公式,这里对图形进展了割、补两种处理,对应着等差数列前项和的两个公式.
3.公式的应用
公式中含有四个量,运用方程的思想,知三求一.
例1.求和:;
解题的关键是数清项数,小结数项数的方法.
例2.等差数列中前多少项的和是9900?
此题本质是反用公式,解一个关于的一元二次函数,注意得到的项数必须是正整数.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智慧农业与蔬菜品牌升级-全面剖析
- 4S店数字化转型策略-全面剖析
- 广告创意趋势与市场动态-全面剖析
- 城市住房保障机制-全面剖析
- 互动式阅读空间设计-全面剖析
- RMI安全性研究新趋势-全面剖析
- 水上运输物流效率提升-全面剖析
- 哲学史与美学-全面剖析
- 养老金融产品创新-全面剖析
- 心血管疾病预防-全面剖析
- 2022儿童间隙保持器临床应用专家共识主要内容(全文)
- 膝关节病护理查房ppt
- 4.1ENSO南方涛动解析课件
- JJG 596-2012 电子式交流电能表(现行有效)
- 《海水增养殖用环保浮球技术要求》标准及编制说明
- 河池市出租车驾驶员从业资格区域科目考试题库(含答案)
- 名中医治肺结核肺痨九个秘方
- 关于磷化行业企业建设项目及污染排放有关问题法律适用的复函
- 某化工厂拆除施工方案(完整资料)
- 搅拌功率计算-150818
- GB_T 39995-2021 甾醇类物质的测定(高清-现行)
评论
0/150
提交评论