光电子材料激光及光纤_第1页
光电子材料激光及光纤_第2页
光电子材料激光及光纤_第3页
光电子材料激光及光纤_第4页
光电子材料激光及光纤_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

光电子材料激光及光纤第一页,共四十五页,2022年,8月28日一、激光器的诞生19世纪的科学家们进行了关于电磁波的卓越的研究1905年爱因斯坦提出了光量子和光电效应的概念,揭示了辐射的波粒二象性

1916年爱因斯坦提出了受激辐射的概念1900年普朗克引入的能量量子的概念

基础性、探索性研究第二页,共四十五页,2022年,8月28日激光器的诞生激光走向新技术的开发和工程应用阶段1954年研制成第一台微波激射器

1958年美国的汤斯和苏联的巴索夫及普罗霍洛夫等人提出了激光的概念和理论设计1960年美国的梅曼研制成功第一台红宝石激光器;贾万等人研制成氦氖激光器。我国的第一台激光器于1961年在长春光机所创制成功

第三页,共四十五页,2022年,8月28日激光技术原理:利用受激辐射放大电磁波,可在紫外线、可见光、红外谱区极窄的频段内产生高强度相干辐射。激光的特性使之在光学应用领域带来了革命性的变化:

方向性单色性相干性高亮度接近单频干涉性好发射方向的空间内能量高度集中第四页,共四十五页,2022年,8月28日四十多年来,激光器的品种迅速增加:固体激光器半导体激光器固体激光器(半导体激光泵浦)化学激光器(HF/DF激光、氧碘化学激光器、CO2激光、燃料激光、氦氖激光)激光的种类第五页,共四十五页,2022年,8月28日自由电子激光器x射线激光器准分子激光器金属蒸气激光器等。

铜蒸气激光第六页,共四十五页,2022年,8月28日激光器的输出水平不断提高:中、小功率器件高功率、高能量激光器;脉冲体制从连续波、准连续波到各种短脉冲、超短脉冲的激光。连续的高能激光单次输出能量已达百万焦耳以上;超短脉冲:纳秒皮秒费秒阿秒

脉冲功率密度则可高达1020瓦/cm2以上。

第七页,共四十五页,2022年,8月28日输出激光的频率覆盖着越来越广的范围:长至亚毫米(太赫兹)短至x射线γ激光也在探索中,分立的激光谱线达几千条;第八页,共四十五页,2022年,8月28日激光器组成:工作物质(基质和激活离子)、激发源(泵浦)、共振腔。工作物质:借外来能源激励实现粒子数反转并产生受激辐射放大作用的物质系统,包括固体(晶体、玻璃)、气体(原子气体、离子气体、分子气体)、液体和半导体等。激光器利用泵浦(闪光灯或另一种激光器以及气体放电激励、化学激励、核能激励)等激发源激发工作物质实现激射。共振腔作用:通过工作物质对激光提供反馈,以激发更多的光发射。大多数半导体激光器是利用在GaAs的p-型层和n-型层之间的结区(极窄,约lµm),通过电荷注入等激励方式,激发非严衡载流子实现粒子数反转,从而产生受激发射。第九页,共四十五页,2022年,8月28日工作物质激光器最重要的部分是工作物质,包括使原子高低能态分布反转的激活离子和基质。用过渡金属离子(如Cr3+)激活的三能级激光晶体,如Cr3+:Al3氧化物激光晶体

固体激光器材料用稀土离子(如Nd3+)氟化物激光晶体激活的四能级体系复合石榴石激光晶体激光玻璃(钕玻璃)色心激光晶体(如LiF,KCl)

原子气体气体激光器材料离子气体(氩离子、氪离子)工分子气体(CO2、CO、N2分子)作准分子气体(XeF、KrF)物有机荧光染料(如罗丹明6B)质液体激光器材料稀土螯合物(如Eu(TTA)3、Eu(BTF)4)钕氧氯化硒(Nd3+:SeOCl2)半导体激光器材料可见光激光管材料(如AlGaAs)红外激光管材料(GaAs、Pb1-XSnXTe)非线性光学材料(LiNbO3)激光器辅助材料窗口、透镜材料(如GaAs、ZnSe)抗反射涂层(ZrO2、SiO2、TiO2、MgF2等)其它第十页,共四十五页,2022年,8月28日

固态基质材料可粗略分为晶态固体和玻璃两大类。要求:具备清晰的荧光线、强的吸收带及相当高的量子效率,优良的光学、热学性能和机械性能。

晶体质量,对光学损伤或机械损伤的抵御能力、化学稳定性等也至关重要。

(1)离子大小:晶态基质的晶格格点必须与激活离子的大小相当。在离子晶体中,离子半径之差大于15%就不能直接掺入1%以上的激活离子。但用稀土激活的晶体激活离子的掺入量可大于1%。

第十一页,共四十五页,2022年,8月28日

(2)电性中和:掺杂剂价态如与基质阳离子不同,则要采取适当的电荷补偿技术维持高掺杂下的电性中和,否则掺杂剂的溶解度将受到限制。例如CaWO4中如只掺入稀土取代Ca2+,溶解度就受到限制,这时再加入Na+,稀土溶解度才增加。

(3)抗热冲击能力:基质的某些物理性质决定该晶体对突然爆发的泵浦能的抗热冲击能力,对确定运转方式如连续运转或高功率、高重复率脉冲运转颇为关键。对于这些运转方式,利用热膨胀系数低、强度高、热导率高的晶体更合适。这些性质的相对数值大体上与化合物的熔点有关,因此使用高熔点化合物更有利。第十二页,共四十五页,2022年,8月28日

高强度激光器:晶体有较高的热导率(泵浦源辐照后晶体产生的热必须用冷却剂使之在激光棒表面迅速耗散)。

电荷补偿技术对物理性能有不利影响,如在CaWO4中采用一价离子会使晶体的热膨胀系数增加,强度和热导率降低(显然三价离子为宜)。

(4)光学性质:理想晶体应对泵浦波长有较强吸收,对激射波长吸收很弱。(5)纯度:生长激光晶体所用氧化物纯度为5-6个“9”,总杂质含量不得超过1-10ppm。

第十三页,共四十五页,2022年,8月28日

激光材料制取方法1激光晶体制取方法

A焰熔法(维尔纳叶法)氢氧燃烧产生的高温使料粉通过火焰撒下熔融,熔滴落在籽晶上,使籽晶杆下降进入炉子的较冷部分随即结晶。该法设备简单、不用坩埚,适于生长熔点大于1800℃(可达2500℃)的晶体如红宝石、钇铝石榴石(Y3A15O12)和Y2O3等基质晶体,缺点是晶体内应力大、位错密度高及存在化学不均匀性。

B直拉法适于生长共熔化合物单晶,易自动化,能生长非常大的完美单晶,如CaWO4、CaMoO4、红宝石、碱土金属卤化物及石榴石晶体等。

第十四页,共四十五页,2022年,8月28日

近年来出现的钆钪镓石榴石Gd3Sc2Ga3O12(简称GSGG)就是用直拉法生长的。Nd,采用铱坩埚在含l~3%O2的氮气氛中生长(感应加热),已生长出直径130mm、长100mm的晶坨,晶体尺寸大、质量高、适于制造高平均输出(1KW)的板条激光器(规格l×10×20cm3),在金属加工方面可与CO2激光器竞争。作为可买到的商品Nd∶YAG一般都采用直拉法生长,已制出最大直径约10mm、长达150mm的激光棒。还制出直径75mm的非掺YAG晶锭。由于生长时间慢(0.5mm/h),生长10~15cm长的晶棒,耗时数周,造成高的生产成本。目前正在研制400一1000W的Nd∶YAG板条激光器。第十五页,共四十五页,2022年,8月28日

此外,钕含量比YAG高6倍的Nd:LMAO(Nd:La1-XMgAl11O19)也是用直拉法生长的。这种晶体解决了钕含量低使输出功率受限制的问题,已实现高功率输出,近年内可望制成千瓦级小型固体激光器,其激射波长为1.054µm。C热交换器(HEM)法该法将籽晶置于坩埚底部的中心位置,熔料装到籽晶的上方、坩埚位于热交换器的上部,用石墨电阻炉生长激光晶体。对于给定的物料,炉温决定液体内的温度梯度,热交换器的温度决定固体内的温度梯度。固液界面因浸没在熔体表面以下,不受机械和温度扰动的影响,故可实现均匀生长,最大限度地降低生长条纹,获得均匀的掺杂分布(指分凝系数小于1的元素)。该法适于生长Cr:A12O3(红宝石)、Nd:YAG、Co:MgF2和Ti:A12O3(蓝宝石),能获得大尺寸优质晶体,如Φ65mm的Co:MgF2晶体和Φ320mm、重50Kg的蓝宝石晶体。第十六页,共四十五页,2022年,8月28日表:典型的固态激光材料系统及工作原理基质掺杂剂敏化剂激光波长(µm)工作性能效率(%)工作温度(K)泵浦源红宝石Cr3+0.6943输出数J/Pulse0.7300Y3Al5O12Nd3+1.0641输出达数百W(连续)或100J/Pulse0.4300氙闪光灯玻璃(硼酸盐、硅酸盐、磷酸盐等)Nd3+Mn2+,UO22+1.05-1.08YAlO3Nd3+Cr1.064225mJ/Pulse,Q开关20ns,10pps100W(连续)1300连续波氪灯CaLa4(SiO4)3ONd3+-1.061500mJ/Pulse,Q开关30ns,30Pulse/s6mm×75mm棒1300氙闪光灯Y3Al5O12Ho3+ErTm2.1棒规格3mm×50mm,20W(连续)477典化钨YLiF4Ho3+ErTm2.064mJQ开关150mJ长脉冲(2µs)3mm×50mm棒0.5300氙闪光灯YLiF4Er3+-0.85500mJ/Pulse,长脉冲,5mm×30mm棒,阈值(10~100)J0.03300氙闪光灯YAlO3Er3+-1.666mm×50mm棒,阈值52J-300氙闪光灯玻璃Er3+Yb1.544mm×76mm棒输出0.86J(普通)输出0.18J(Q开关)0.1300氙闪光灯YAlO3Tm3+Cr2.355mm×50mm棒,阈值110J-300氙闪光灯YLiF4Nd3+-1.0535mm×50mm棒,阈值8J,输出200mJ,脉冲宽度100µs

07300氙闪光灯La2Be2O5Nd3+-1.0705mm×50mm棒,输出9W(连续)0.33300碘钨灯第十七页,共四十五页,2022年,8月28日表:波长可调激光晶体及工作性能激活离子基质晶体激光波长(µm)温度(K)工作方式泵浦源Ti3+Al2O3BeAl2O40.680~1.1780.780~0.820300300脉冲,连续脉冲激光器,灯激光器V3+CsCaF3MgF21.240~1.3301.050~1.30080200连续氪激光器Cr3+BeAl2O4Be3Al2Si6O12KZnF3ZnWO4Y3Ga5O12Gd3Ga5O12Gd3Sc2Al3O12Y3Sc2Ga3O12Gd3Sc2Ga3O12La3Lu2Ga3O120.700~0.8300.751~0.7590.758~0.8750.785~0.8650.980~1.0900.7400.7600.765~0.8010.7300.745~0.8200.8203008030077300300300300300300脉冲,连续脉冲脉冲连续连续连续连续连续连续灯灯氪激光器激光器激光器激光器激光器激光器激光器Co3+MgF2KMgF3KZnF3ZnF21.630~2.451.62~1.9001.650~2.0702.16580~2258080~20077连续连续Nd:YAG激光器氩激光器Ni2+MgOCaY2Mg2Ge3O12KMgF3MgF2MnF21.310~1.4101.4601.5911.610~1.7401.920~1.940778077~30080~20077~85脉冲,连续连续脉冲,连续Nd:YAG激光器第十八页,共四十五页,2022年,8月28日半导体激光材料的制取方法半导体激光器主要用于光学器件、激光唱盘、激光印刷机和光纤通信等领域。目前研制的半导体激光材料体系,短波长(0.7~1.0µm)材料以(Ga,Al)As/GaAs为主;长波长(1.10~1.6µm)材料以(In,Ga)(As,P)/InP为主。因此GaAs,InP衬底材料及((Ga,Al)As,(In,Ga)(As,P)外延膜质量至关重要。衬底用GaAs单晶的生长,目前用高压液体覆盖直拉(LEC)法已获得Φ125mm的高纯单晶。在生长过程中,通过采取理想的热环境,尽可能使固-液界面保持低的温度梯度,保持表面凹向熔体以及进行等电子掺杂等措施,显著降低了位错密度。用水平布里支曼(HB)法已获得宽80mm、长100mm的D型GaAs晶体,位错密度比LEC晶体低,更适合作衬底材料。生长InP远比GaAs困难,通常用LEC法生长,已能生长直径达75mm、重1.2kg的无孪生InP单晶。

第十九页,共四十五页,2022年,8月28日外延膜的生长除常用的液相外延外,分子束外延(MBE)和金属有机化学气相沉积(MOCVD)等新的薄膜生长方法发展很快。目前生长GaAs和(Ga,A1)As量子阱结构(0.6~0.8µm)以用MBE和MOCVD为宜,对波长1.2~1.6µm的(In,Ga)(As,P)/InP体系,以用氢化物输运气相外延为宜。第二十页,共四十五页,2022年,8月28日激光应用第二十一页,共四十五页,2022年,8月28日(1)激光可在很小的区域上聚焦很高的功率密度:在工业制造中可进行精确的切削、钻孔和表面改性做精密的医疗手术作用于微型靶实现激光核聚变。第二十二页,共四十五页,2022年,8月28日(2)激光光谱技术比传统的分辨率提高了百万倍,灵敏度提高了百亿倍;激光为信息技术开拓了丰富的频率资源;布满全球的光纤网,加上卫星通信网,形成了信息高速公路的基础;光存储、激光全息、激光照排、打印及条码扫描技术等,提供了全新的多样化的信息服务。第二十三页,共四十五页,2022年,8月28日

(3)激光技术开辟了崭新的军事应用:激光瞄准、制导、测距激光雷达激光引信激光致盲传感器高能强激光武器等

ABL第二十四页,共四十五页,2022年,8月28日(4)激光光盘存储密度大保存时间长信息处理方便第二十五页,共四十五页,2022年,8月28日26光盘的工作原理第二十六页,共四十五页,2022年,8月28日CD光盘剖面图光盘结构第二十七页,共四十五页,2022年,8月28日第二十八页,共四十五页,2022年,8月28日二、光导纤维材料

光导纤维是指能导光的纤维,通常由折射率高的纤芯及折射率低的包层组成,这两部分对传输的光具有极高的透过率。目前应用的光纤是以SiO2为主要原料的纤维,其纤芯芯径为数µm到数百µm。光线进入光纤在纤芯与包层的界面发生多次全反射,将载带的信息从一端传到另一端,从而实现光纤通信。1966年,英籍华人高昆(K.C.Kao)和他的同事Hockham以及法国的Werts根据介质波导理论提出光纤传输线的概念。尽管他们所试验的光纤损耗高达1000dB/km,但他们指出如采用石英玻璃等作介质,可使其损耗降低到20dB/km。(光纤的损耗:损耗指光信号功率传输每单位长度衰减的程度,用分贝/公里(dB/km)表示)第二十九页,共四十五页,2022年,8月28日光导纤维传输点光源示意图光纤结构示意图光纤芯线结构第三十页,共四十五页,2022年,8月28日光纤传输信息具有许多优点:●载频为3×1014Hz,约为电视通信所用超高频的100000倍,从而使信息载带容量或带宽激增;●传输损耗很小,每单位传输距离只需要极少的放大器或中继站。与金属导线比起来,高频率下光纤损耗低得多,它可以传输几十公里乃至上百公里不必增加中继器,而金属同轴电缆没有中继器只能传输几公里。在理论上,光纤可以传送107路电视或1010路电话,可以把一个特大图书馆储藏的全部图书信息在短时间内全部传送完毕,其容量比金属同轴电缆大5个数量级。第三十一页,共四十五页,2022年,8月28日●光纤是绝缘体,不受邻近其它系统和其它物体产生杂散电场的影响。因此不受干扰,基本上能防范电子间谍。●

尺寸小、重量轻,有利于铺设和运输。光纤的芯径仅为单管同轴电缆的百分之一。8芯光缆直径约10mm,而标准同轴电缆为47mm。这样可以解决地下管网由于通信电缆太多而造成的拥挤问题。●光纤材料主要是石英(SiO2),它在地球上非常丰富。第三十二页,共四十五页,2022年,8月28日

纤芯的作用是传导光波,包层的作用是将光波封闭在光纤中传播。为了达到这一目的,需保证纤芯材料的折射率n1大于包层材料的折射率n2。目前通信应用的光纤主要是石英玻璃光纤。其纤芯由掺有折射率比石英高的杂质的石英材料作成,而包层则往往在石英中掺入比石英折射率低的杂质。刚拉制出来的光纤就像普通玻璃丝一样是很脆弱的。为了保护光纤,提高其机械强度,作为产品提供的光纤都在刚拉制后经过一道套塑工序,在其外表涂覆上一层甚至几层塑料层。通常光纤的套塑方式有松套和紧套两种。涂覆可以提高光纤的抗拉强度,同时改善其抗水性能。第三十三页,共四十五页,2022年,8月28日●石英光纤

目前光通信所应用的唯一商品化材料。石英光纤主要由SiO2构成,一般采用SiCl4或硅烷等挥发性化合物进行氧化或水解,通过气相沉积获得低损耗石英光纤预制件,再进行拉丝。根据传播模式对折射指数断面分布的要求,可在制备预制件的过程中,加入挥发性氯化物作添加剂。用锗可提高折射指数,用硼可降低折射指数。新的动向是采用氟,例如加入CF4或CCl2F2降低包层的折射指数。加入磷(加POCl3)用来降低石英光纤的熔点。第三十四页,共四十五页,2022年,8月28日●多组分玻璃光纤

SiO2约占百分之几十,此外还含有B2O3、GeO2、P2O3和As2O3等玻璃形成体及Na2O、K2O、CaO、MgO、BaO和PbO等改性剂,熔点低(<1400℃),可用传统的坩埚法拉丝,适于制做大芯径、大数值孔径光纤。第三十五页,共四十五页,2022年,8月28日●全塑料光纤和塑料包层光纤全塑料光纤主要由特制的高透明度有机玻璃、聚苯乙烯等塑料制成,已制成阶跃型和梯度型多模光纤,目前光纤损耗已降至数十dB/km。其特点是柔韧、加工方便、芯径和数值孔径大。塑料包层光纤是以石英作纤芯、塑料作包层的阶跃型多模光纤。其芯径和数值孔径都较大,适于短距离小容量通信系统应用。第三十六页,共四十五页,2022年,8月28日

●红外光纤

石英光纤在1.3至1.5µm的区域内具有最低的损耗和色散,损耗已降低到0.15dB/km(1.55µm),接近于0.1dB/km的理论极限。但其传输距离由于瑞利散射不会超过200km。利用散射损耗与波长四次幂成反比的关系,制造出适用于长波长的光纤,使损耗进一步降低,就能延长传输距离。5000km传输距离如用0.83µm的光纤传输系统,需333个中继站,而用1.5µm的系统有33个中继站就够了。各发达国家已着眼于2~30µm的新的传输波段,对卤化物、硫属化物和重金属氧化物等红外光纤做了大量开创性工作。第三十七页,共四十五页,2022年,8月28日

A卤化物光纤

其制造难度比氧化物光纤大,且需保护涂层,但传输损耗理论值比石英光纤小l至2个数量级,有可能实现几千公里无中继通信。

卤化铊卤化铊有较好的延展性,已挤压出直径75~1000µm、长200m的多晶纤维。溴化铊或碘化铊多晶光纤在4.0~5.5µm时损耗最低,可达0.0ldB/km。多晶KRS5(TlBrI)和KRS6(TlClI)作为非通信光纤在外科手术、激光材料加工、军事应用等短距离应用中,日益受到重视。KRS5在10.6µm的最低损耗为350dB/km,KRS6为ldB/km。采用KRS6作包层,KRS5作芯线,已获得损耗0.2dB/m,NA为0.96(在10.6µm)的光纤。

氟化铍在红外区的本征损失为石英的l/6,可拉制透射2µm波段的光纤。该种光纤有可能将光信号无中继传输数百甚至上千公里。第三十八页,共四十五页,2022年,8月28日

氟化锆理论损耗达0.001dB/km(2.55µm)(比最好的石英光纤低两个数量级),透过率可达氧化物玻璃的100倍,且受高能辐照不易黑化。氟化锆基玻璃的主成分为氟化锆(60~70mol%),并以氟化钡(20~30mol%)为改性剂(降低熔点),以少量其它氟化物作稳定剂(如AlF3、LaF3、PbF2作结晶化抑制剂)和指数改性剂(如PbF2),借以获得合适的纤芯和包层组分。这种玻璃光纤的透射波长范围从7~8µm的红外区一直延伸到0.2~0.3µm的近紫外区。拉出的Zr-Ba-La-Al-Li-Pb(纤芯)/Zr-Ba-La-Al-Li(包层)氟化物光纤,在2.55µm下的最低损耗为6.8dB/km,纤维的“实用”强度高达3800MPa。估计氟化物玻璃光纤接近0.001dB/km的最低理论损耗,从而实现横跨大洋的通信。第三十九页,共四十五页,2022年,8月28日B硫属玻璃光纤砷、锗、锑与硫属元素硫、硒构成的玻璃叫硫属玻璃,光学损耗高,主要用于短距离传能。目前己拉出在CO和CO2激光波长下损耗为数百dB的纤维。在一根光纤上能传输数瓦的能量,这对拓宽CO2和CO大功率激光器的应用领域有重要意义。C重金属氧化物光纤对此类纤维的研究,主要局限于GeO2系统。抽成丝后最小损耗约为4dB/km(2µm)。可用作红外光纤、非线性光学光纤,尤其是可用来实现光信号放大,有可能用于超长距离光学传输系统。在传能方面,80GeO2-10ZnO-10K2O空心纤维是供CO2激光器传能用的一种较好的包层材料。第四十页,共四十五页,2022年,8月28日光纤制造工艺

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论