版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为A.12米 B.4米 C.5米 D.6米2.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需()A.(a+b)元 B.(3a+2b)元 C.(2a+3b)元 D.5(a+b)元3.若关于x的一元二次方程x2﹣2x+m=0没有实数根,则实数m的取值是()A.m<1 B.m>﹣1 C.m>1 D.m<﹣14.已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE,过点A作AE的垂线交DE于点P,若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是()A.①③④ B.①②⑤ C.③④⑤ D.①③⑤5.如图,在△ABC中,AB=AC=3,BC=4,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的周长是()A.3 B.4 C.5 D.66.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积是()A. B. C.- D.7.某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度的产值增长了()A.2x% B.1+2x% C.(1+x%)x% D.(2+x%)x%8.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A.1个 B.2个 C.3个 D.4个9.如图,AB与⊙O相切于点B,OA=2,∠OAB=30°,弦BC∥OA,则劣弧的长是()A. B. C. D.10.如图,已知点A,B分别是反比例函数y=(x<0),y=(x>0)的图象上的点,且∠AOB=90°,tan∠BAO=,则k的值为()A.2 B.﹣2 C.4 D.﹣4二、填空题(共7小题,每小题3分,满分21分)11.已知反比例函数y=在第二象限内的图象如图,经过图象上两点A、E分别引y轴与x轴的垂线,交于点C,且与y轴与x轴分别交于点M、B.连接OC交反比例函数图象于点D,且,连接OA,OE,如果△AOC的面积是15,则△ADC与△BOE的面积和为_____.12.如图,△ABC内接于⊙O,AB是⊙O的直径,点D在圆O上,BD=CD,AB=10,AC=6,连接OD交BC于点E,DE=______.13.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为_____.14.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.其中正确的序号是(把你认为正确的都填上).15.方程=1的解是___.16.一个多边形的内角和是,则它是______边形.17.如图,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限,若反比例函数的图象经过点B,则k的值是_____.三、解答题(共7小题,满分69分)18.(10分)随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A,B两种上网学习的月收费方式:收费方式月使用费/元包时上网时间/h超时费/(元/min)A7250.01Bmn0.01设每月上网学习时间为x小时,方案A,B的收费金额分别为yA,yB.(1)如图是yB与x之间函数关系的图象,请根据图象填空:m=;n=;(2)写出yA与x之间的函数关系式;(3)选择哪种方式上网学习合算,为什么.19.(5分)为看丰富学生课余文化生活,某中学组织学生进行才艺比赛,每人只能从以下五个项目中选报一项:.书法比赛,.绘画比赛,.乐器比赛,.象棋比赛,.围棋比赛根据学生报名的统计结果,绘制了如下尚不完整的统计图:图1各项报名人数扇形统计图:图2各项报名人数条形统计图:根据以上信息解答下列问题:(1)学生报名总人数为人;(2)如图1项目D所在扇形的圆心角等于;(3)请将图2的条形统计图补充完整;(4)学校准备从书法比赛一等奖获得者甲、乙、丙、丁四名同学中任意选取两名同学去参加全市的书法比赛,求恰好选中甲、乙两名同学的概率.20.(8分)勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下如图(1)∠DAB=90°,求证:a2+b2=c2证明:连接DB,过点D作DF⊥BC交BC的延长线于点F,则DF=b-aS四边形ADCB=S四边形ADCB=∴化简得:a2+b2=c2请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中∠DAB=90°,求证:a2+b2=c221.(10分)网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”、“中评”、“差评”三种评价,假设这三种评价是等可能的.(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图.利用图中所提供的信息解决以下问题:①小明一共统计了个评价;②请将图1补充完整;③图2中“差评”所占的百分比是;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.22.(10分)如图,一盏路灯沿灯罩边缘射出的光线与地面BC交于点B、C,测得∠ABC=45°,∠ACB=30°,且BC=20米.(1)请用圆规和直尺画出路灯A到地面BC的距离AD;(不要求写出画法,但要保留作图痕迹)(2)求出路灯A离地面的高度AD.(精确到0.1米)(参考数据:≈1.414,≈1.732).23.(12分)某中学为了解八年级学习体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A、B、C、D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名.24.(14分)某商场柜台销售每台进价分别为160元、120元的、两种型号的电器,下表是近两周的销售情况:销售时段销售数量销售收入种型号种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入—进货成本)(1)求、两种型号的电器的销售单价;(2)若商场准备用不多于7500元的金额再采购这两种型号的电器共50台,求种型号的电器最多能采购多少台?(3)在(2)中商场用不多于7500元采购这两种型号的电器共50台的条件下,商场销售完这50台电器能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】
试题分析:在Rt△ABC中,BC=6米,,∴AC=BC×=6(米).∴(米).故选A.【详解】请在此输入详解!2、C【解析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故选C.【点睛】本题主要考查列代数式,总价=单价乘数量.3、C【解析】试题解析:关于的一元二次方程没有实数根,,解得:故选C.4、D【解析】
①首先利用已知条件根据边角边可以证明△APD≌△AEB;
②由①可得∠BEP=90°,故BE不垂直于AE过点B作BF⊥AE延长线于F,由①得∠AEB=135°所以∠EFB=45°,所以△EFB是等腰Rt△,故B到直线AE距离为BF=,故②是错误的;
③利用全等三角形的性质和对顶角相等即可判定③说法正确;
④由△APD≌△AEB,可知S△APD+S△APB=S△AEB+S△APB,然后利用已知条件计算即可判定;
⑤连接BD,根据三角形的面积公式得到S△BPD=PD×BE=,所以S△ABD=S△APD+S△APB+S△BPD=2+,由此即可判定.【详解】由边角边定理易知△APD≌△AEB,故①正确;
由△APD≌△AEB得,∠AEP=∠APE=45°,从而∠APD=∠AEB=135°,
所以∠BEP=90°,
过B作BF⊥AE,交AE的延长线于F,则BF的长是点B到直线AE的距离,
在△AEP中,由勾股定理得PE=,
在△BEP中,PB=,PE=,由勾股定理得:BE=,
∵∠PAE=∠PEB=∠EFB=90°,AE=AP,
∴∠AEP=45°,
∴∠BEF=180°-45°-90°=45°,
∴∠EBF=45°,
∴EF=BF,
在△EFB中,由勾股定理得:EF=BF=,
故②是错误的;
因为△APD≌△AEB,所以∠ADP=∠ABE,而对顶角相等,所以③是正确的;
由△APD≌△AEB,
∴PD=BE=,
可知S△APD+S△APB=S△AEB+S△APB=S△AEP+S△BEP=+,因此④是错误的;
连接BD,则S△BPD=PD×BE=,
所以S△ABD=S△APD+S△APB+S△BPD=2+,
所以S正方形ABCD=2S△ABD=4+.
综上可知,正确的有①③⑤.故选D.【点睛】考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾股定理,综合性比较强,解题时要求熟练掌握相关的基础知识才能很好解决问题.5、C【解析】
根据等腰三角形的性质可得BE=BC=2,再根据三角形中位线定理可求得BD、DE长,根据三角形周长公式即可求得答案.【详解】解:∵在△ABC中,AB=AC=3,AE平分∠BAC,∴BE=CE=BC=2,又∵D是AB中点,∴BD=AB=,∴DE是△ABC的中位线,∴DE=AC=,∴△BDE的周长为BD+DE+BE=++2=5,故选C.【点睛】本题考查了等腰三角形的性质、三角形中位线定理,熟练掌握三角形中位线定理是解题的关键.6、A【解析】
先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD.【详解】∵∠ACB=90°,AC=BC=1,∴AB=,∴S扇形ABD=,又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD−S△ABC=S扇形ABD=,故选A.【点睛】本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.7、D【解析】设第一季度的原产值为a,则第二季度的产值为,第三季度的产值为,则则第三季度的产值比第一季度的产值增长了故选D.8、B【解析】
解:根据中心对称的概念可得第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个.故选B.【点睛】本题考查中心对称图形的识别,掌握中心对称图形的概念是本题的解题关键.9、B【解析】解:连接OB,OC.∵AB为圆O的切线,∴∠ABO=90°.在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°.∵BC∥OA,∴∠OBC=∠AOB=60°.又∵OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧BC的弧长为=π.故选B.点睛:此题考查了切线的性质,含30度直角三角形的性质,以及弧长公式,熟练掌握切线的性质是解答本题的关键.10、D【解析】
首先过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,易得△OBD∽△AOC,又由点A,B分别在反比例函数y=(x<0),y=(x>0)的图象上,即可得S△OBD=,S△AOC=|k|,然后根据相似三角形面积的比等于相似比的平方,即可求出k的值【详解】解:过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,
∴∠ACO=∠ODB=90°,
∴∠OBD+∠BOD=90°,
∵∠AOB=90°,
∴∠BOD+∠AOC=90°,
∴∠OBD=∠AOC,
∴△OBD∽△AOC,
又∵∠AOB=90°,tan∠BAO=,
∴=,
∴=,即,
解得k=±4,
又∵k<0,
∴k=-4,
故选:D.【点睛】此题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法。二、填空题(共7小题,每小题3分,满分21分)11、1.【解析】连结AD,过D点作DG∥CM,∵,△AOC的面积是15,∴CD:CO=1:3,OG:OM=2:3,∴△ACD的面积是5,△ODF的面积是15×=,∴四边形AMGF的面积=,∴△BOE的面积=△AOM的面积=×=12,∴△ADC与△BOE的面积和为5+12=1,故答案为:1.12、1【解析】
先利用垂径定理得到OD⊥BC,则BE=CE,再证明OE为△ABC的中位线得到,入境计算OD−OE即可.【详解】解:∵BD=CD,∴,∴OD⊥BC,∴BE=CE,而OA=OB,∴OE为△ABC的中位线,∴,∴DE=OD-OE=5-3=1.故答案为1.【点睛】此题考查垂径定理,中位线的性质,解题的关键在于利用中位线的性质求解.13、1【解析】作DH⊥x轴于H,如图,
当y=0时,-3x+3=0,解得x=1,则A(1,0),
当x=0时,y=-3x+3=3,则B(0,3),
∵四边形ABCD为正方形,
∴AB=AD,∠BAD=90°,
∴∠BAO+∠DAH=90°,
而∠BAO+∠ABO=90°,
∴∠ABO=∠DAH,
在△ABO和△DAH中∴△ABO≌△DAH,
∴AH=OB=3,DH=OA=1,
∴D点坐标为(1,1),
∵顶点D恰好落在双曲线y=上,
∴a=1×1=1.故答案是:1.14、①②④【解析】分析:∵四边形ABCD是正方形,∴AB=AD。∵△AEF是等边三角形,∴AE=AF。∵在Rt△ABE和Rt△ADF中,AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL)。∴BE=DF。∵BC=DC,∴BC﹣BE=CD﹣DF。∴CE=CF。∴①说法正确。∵CE=CF,∴△ECF是等腰直角三角形。∴∠CEF=45°。∵∠AEF=60°,∴∠AEB=75°。∴②说法正确。如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF。∵∠CAD≠∠DAF,∴DF≠FG。∴BE+DF≠EF。∴③说法错误。∵EF=2,∴CE=CF=。设正方形的边长为a,在Rt△ADF中,,解得,∴。∴。∴④说法正确。综上所述,正确的序号是①②④。15、x=﹣4【解析】
分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:3+2x=x﹣1,解得:x=﹣4,经检验x=﹣4是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.16、六【解析】试题分析:这个正多边形的边数是n,则(n﹣2)•180°=720°,解得:n=1.则这个正多边形的边数是六,故答案为六.考点:多边形内角与外角.17、.【解析】
已知△ABO是等边三角形,通过作高BC,利用等边三角形的性质可以求出OB和OC的长度;由于Rt△OBC中一条直角边和一条斜边的长度已知,根据勾股定理还可求出BC的长度,进而确定点B的坐标;将点B的坐标代入反比例函数的解析式中,即可求出k的值.【详解】过点B作BC垂直OA于C,∵点A的坐标是(2,0),∴AO=2,∵△ABO是等边三角形,∴OC=1,BC=,∴点B的坐标是把代入,得故答案为.【点睛】考查待定系数法确定反比例函数的解析式,只需求出反比例函数图象上一点的坐标;三、解答题(共7小题,满分69分)18、(1)10,50;(2)见解析;(3)当0<x<30时,选择A方式上网学习合算,当x=30时,选择哪种方式上网学习都行,当x>30时,选择B方式上网学习合算.【解析】
(1)由图象知:m=10,n=50;(2)根据已知条件即可求得yA与x之间的函数关系式为:当x≤25时,yA=7;当x>25时,yA=7+(x﹣25)×0.01;(3)先求出yB与x之间函数关系为:当x≤50时,yB=10;当x>50时,yB=10+(x﹣50)×60×0.01=0.6x﹣20;然后分段求出哪种方式上网学习合算即可.【详解】解:(1)由图象知:m=10,n=50;故答案为:10;50;(2)yA与x之间的函数关系式为:当x≤25时,yA=7,当x>25时,yA=7+(x﹣25)×60×0.01,∴yA=0.6x﹣8,∴yA=;(3)∵yB与x之间函数关系为:当x≤50时,yB=10,当x>50时,yB=10+(x﹣50)×60×0.01=0.6x﹣20,当0<x≤25时,yA=7,yB=50,∴yA<yB,∴选择A方式上网学习合算,当25<x≤50时.yA=yB,即0.6x﹣8=10,解得;x=30,∴当25<x<30时,yA<yB,选择A方式上网学习合算,当x=30时,yA=yB,选择哪种方式上网学习都行,当30<x≤50,yA>yB,选择B方式上网学习合算,当x>50时,∵yA=0.6x﹣8,yB=0.6x﹣20,yA>yB,∴选择B方式上网学习合算,综上所述:当0<x<30时,yA<yB,选择A方式上网学习合算,当x=30时,yA=yB,选择哪种方式上网学习都行,当x>30时,yA>yB,选择B方式上网学习合算.【点睛】本题考查一次函数的应用.19、(1)200;(2)54°;(3)见解析;(4)【解析】
(1)根据A的人数及所占的百分比即可求出总人数;(2)用D的人数除以总人数再乘360°即可得出答案;(3)用总人数减去A,B,D,E的人数即为C对应的人数,然后即可把条形统计图补充完整;(4)用树状图列出所有的情况,找出恰好选中甲、乙两名同学的情况数,利用概率公式求解即可.【详解】解:(1)学生报名总人数为(人),故答案为:200;(2)项目所在扇形的圆心角等于,故答案为:54°;(3)项目的人数为,补全图形如下:(4)画树状图得:所有出现的等可能性结果共有12种,其中满足条件的结果有2种.恰好选中甲、乙两名同学的概率为.【点睛】本题主要考查扇形统计图与条形统计图的结合,能够从图表中获取有用信息,掌握概率公式是解题的关键.20、见解析.【解析】
首先连结BD,过点B作DE边上的高BF,则BF=b-a,表示出S五边形ACBED,两者相等,整理即可得证.【详解】证明:连结BD,过点B作DE边上的高BF,则BF=b-a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b1+ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c1+a(b-a),∴ab+b1+ab=ab+c1+a(b-a),∴a1+b1=c1.【点睛】此题考查了勾股定理的证明,用两种方法表示出五边形ACBED的面积是解本题的关键.21、(1)①150;②作图见解析;③13.3%;(2).【解析】
(1)①用“中评”、“差评”的人数除以二者的百分比之和即可得总人数;②用总人数减去“中评”、“差评”的人数可得“好评”的人数,补全条形图即可;③根据“差评”的人数÷总人数×100%即可得“差评”所占的百分比;(2)可通过列表表示出甲、乙对商品评价的所有可能结果数,根据概率公式即可计算出两人中至少有一个给“好评”的概率.【详解】①小明统计的评价一共有:(40+20)÷(1-60%=150(个);②“好评”一共有150×60%=90(个),补全条形图如图1:③图2中“差评”所占的百分比是:×100%=13.3%;(2)列表如下:好中差好好,好好,中好,差中中,好中,中中,差差差,好差,中差,差由表可知,一共有9种等可能结果,其中至少有一个给“好评”的有5种,∴两人中至少有一个给“好评”的概率是.考点:扇形统计图;条形统计图;列表法与树状图法.22、(1)见解析;(2)是7.3米【解析】
(1)图1,先以A为圆心,大于A到BC的距离为半径画弧交BC与EF两点,然后分别以E、F为圆心画弧,交点为G,连接AG,与BC交点点D,则AD⊥BC;图2,分别以B、C为圆心,BA为半径画弧,交于点G,连接AG,与BC交点点D,则AD⊥BC;(2)在△ABD中,DB=AD;在△ACD中,CD=AD,BC=BD+CD,由此可以建立关于AD的方程,解方程求解.【详解】解:(1)如下图,图1,先以A为圆心,大于A到BC的距离为半径画弧交BC与EF两点,然后分别以E、F为圆心画弧,交点为G,连接AG,与BC交点点D,则AD⊥BC;图2,分别以B、C为圆心,BA为半径画弧,交于点G
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东石油化工学院《工程管理基础》2023-2024学年第一学期期末试卷
- 广东汕头幼儿师范高等专科学校《酒水调制与酒吧管理》2023-2024学年第一学期期末试卷
- 七年级上册《第四章 整式的加减章末小结与考点检测》课件
- 广东农工商职业技术学院《信息论与密码》2023-2024学年第一学期期末试卷
- 广东南方职业学院《日本商务礼仪教程》2023-2024学年第一学期期末试卷
- 广东理工职业学院《新零售物流管理》2023-2024学年第一学期期末试卷
- 【创新设计】2021年高考化学总复习(江西版)配套文档:第二章-化学物质及其变化-化学物质及其变化
- 七年级下册人教版语文书
- 《肝胆疾病的护理》课件
- 【与名师对话】2021届高考化学(课标版)二轮复习阶段测评(一)
- 国家义务教育质量监测结果应用教学研讨
- 燃料油需求专题(二):航线与运费
- 2019年同等学力(教育学)真题精选
- 【框架完整】快乐卡通风十岁成长礼纪念相册PPT模板(PPT 24页)
- 煤矿井下供电三大保护整定细则
- [转载]郑桂华《安塞腰鼓》教学实录
- 泵管清洗专项方案
- 门诊手术室上墙职责、制度(共6页)
- 边坡土压力计算(主动土压力法)
- 钻孔压水试验计算EXCEL表格
- 机电安装项目施工组织计划方案
评论
0/150
提交评论