(浙江专版)高中数学课时跟踪检测(三)充分条件与必要条件新人教A版选修21_第1页
(浙江专版)高中数学课时跟踪检测(三)充分条件与必要条件新人教A版选修21_第2页
(浙江专版)高中数学课时跟踪检测(三)充分条件与必要条件新人教A版选修21_第3页
(浙江专版)高中数学课时跟踪检测(三)充分条件与必要条件新人教A版选修21_第4页
(浙江专版)高中数学课时跟踪检测(三)充分条件与必要条件新人教A版选修21_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课时追踪检测(三)充分条件与必需条件层级一学业水平达标1.设{an}是公比为q的等比数列,则“q>1”是“{an}为递加数列”的( )A.充分而不用要条件B.必需而不充分条件C.充分必需条件D.既不充分也不用要条件分析:选D当数列{a}的首项a1<0时,若>1,则数列{a}是递减数列;当数列{a}nnn的首项a1<0时,要使数列{an}为递加数列,则0<q<1,所以“q>1”是“数列{an}为递加数列”的既不充分也不用要条件.应选D.2.设甲、乙、丙是三个命题,假如甲是乙的必需条件,丙是乙的充分条件但不是乙的必需条件,那么( )A.丙是甲的充分条件,但不是甲的必需条件B.丙是甲的必需条件,但不是甲的充分条件C.丙是甲的充要条件D.丙既不是甲的充分条件,也不是甲的必需条件分析:选A由于甲是乙的必需条件,所以乙?甲.又由于丙是乙的充分条件,但不是乙的必需条件,所以丙?乙,但乙丙,如图.综上,有丙?甲,但甲丙,即丙是甲的充分条件,但不是甲的必需条件.3.设a,b都是非零向量,以下四个条件中,使ab|a|=|b|建立的充分条件是()A.a=-bB.a∥bC.a=2bD.a∥b且|a|=|b|abab分析:选C对于A,当a=-b时,|a|≠|b|;对于B,注意当a∥b时,|a|与|b|可a2bb能不相等;对于C,当a=2b时,|a|=|2b|=|b|;对于D,当a∥b,且|a|=|b|时,可能abab有a=-b,此时|a|≠|b|.综上所述,使|a|=|b|建立的充分条件是a=2b.4.设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的()A.充分不用要条件B.必需不充分条件C.充分必需条件1D.既不充分也不用要条件分析:选Aφ=0时,函数f(x)=cos(x+φ)=cosx是偶函数,而f(x)=cos(x+φ)是偶函数时,φ=π+kπ(k∈Z).故“φ=0”是“函数f(x)=cos(x+φ)为偶函数”的充分不用要条件.5.使|x|=x建立的一个必需不充分条件是()A.x≥0B.x2≥-xC.log2(x+1)>0x<1D.2分析:选B∵|x|=x?x≥0,∴选项A是充要条件.选项C,D均不切合题意.对于选项B,∵由x2≥-x得x(x+1)≥0,∴x≥0或x≤-1.应选项B是使|x|=x建立的必需不充分条件.6.假如命题“若A,则B”的否命题是真命题,而它的逆否命题是假命题,则A是B的________________条件.分析:由于逆否命题为假,所以原命题为假,即A?/B.又因否命题为真,所以抗命题为真,即B?A,所以A是B的必需不充分条件.答案:必需不充分7.条件p:1-<0,条件:>,若p是q的充分不用要条件,则a的取值范围是________.xqxa分析:p:x>1,若p是q的充分不用要条件,则p?q,但qp,也就是说,p对应集合是q对应会合的真子集,所以<1.a答案:(-∞,1)8.以下命题:①“x>2且y>3”是“x+y>5”的充要条件;b2-4ac<0是一元二次不等式ax2+bx+c<0解集为R的充要条件;③“a=2”是“直线ax+2y=0平行于直线x+y=1”的充分不用要条件;④“xy=1”是“lgx+lgy=0”的必需不充分条件.此中真命题的序号为______________.分析:①x>2且y>3时,x+y>5建立,反之不必定,如x=0,y=6.所以“x>2且y>3”是“x+y>5”的充分不用要条件;②不等式解集为R的充要条件是a<0且b2-4ac<0,故②为假命题;a2③当a=2时,两直线平行,反之,若两直线平行,则1=1,∴a=2.所以,“a=2”是“两直线平行”的充要条件;2④lgx+lgy=lg(xy)=0,∴xy=1且x>0,y>0.所以“lgx+lgy=0”建立,xy=1必建立,反之否则.所以“xy=1”是“lgx+lgy=0”的必需不充分条件.综上可知,真命题是④.答案:④9.以下命题中,判断条件p是条件q的什么条件.p:|x|=|y|,q:x=y;p:△ABC是直角三角形,q:△ABC是等腰三角形;(3)p:四边形的对角线相互均分,q:四边形是矩形;2222222(4)p:圆x+y=r与直线ax+by+c=0相切,q:c=(a+b)r.解:(1)∵|x|=|y|x=y,但x=y?|x|=|y|,∴p是q的必需不充分条件.(2)∵△ABC是直角三角形△ABC是等腰三角形,ABC是等腰三角形△ABC是直角三角形,∴p是q的既不充分也不用要条件.(3)∵四边形的对角线相互均分四边形是矩形,四边形是矩形?四边形的对角线相互均分,∴p是q的必需不充分条件.(4)若圆x2+y2=r2与直线ax+by+c=0相切,则圆心到直线ax+by+c=0的距离等于r,即r=|c|a2+b2,所以c2=(a2+b2)r2;2222|c|反过来,若c=(a+b)r,则a2+b2=r建立,说明x2+y2=r2的圆心(0,0)到直线ax++=0的距离等于r,byc即圆x2+y2=r2与直线ax+by+c=0相切,故p是q的充要条件.10.已知数列{n}的前项和n=n+(≠0且≠1),求证:数列{nanSpaqpp充要条件为q=-1.证明:(1)充分性:当q=-1时,a1=p-1.当n≥2时,an=Sn-Sn-1=pn-1(p-1).当n=1时,上式也建立.an+1pnp-app-=p,即数列{a}为等比数列.n-1n3必需性:当n=1时,a1=S1=p+q.当n≥2时,an=Sn-Sn-1=pn-1(p-1).∵p≠0且p≠1,an+1pnp-=p.∴=n-1-apn由于{n}为等比数列,a所以a2=an+1==pp-,∴q=-1.n1即数列{n}为等比数列的充要条件为q=-1.a层级二应试能力达标1a1b1.“0<a<b”是“3>3”的()A.充分不用要条件B.必需不充分条件C.充要条件D.既不充分也不用要条件1a1b1a1b分析:选A当0<a<b时,3>3建立,所以是充分条件;当3>3时,有a<b,不可以推出0<a<b,所以不是必需条件,应选A.2.已知p:x2-x<0,那么命题p的一个必需不充分条件是( )A.0<<1B.-1<<1xx121C.<<D.<<22x32x分析:选B由x2-x<0?0<x<1,运用会合的知识易知:A中0<x<1是p的充要条件;B121中-1<x<1是p的必需不充分条件;C中2<x<3是p的充分不用要条件;D中2<x<2是p的既不充分也不用要条件.应选B.3.以下说法正确的选项是( )A.“x>0”是“x>1”的必需条件B.已知向量m,n,则“m∥n”是“m=n”的充分条件C.“a4>b4”是“a>b”的必需条件D.在△ABC中,“a>b”不是“A>B”的充分条件分析:选AA中,当x>1时,有x>0,所以A正确;B中,当m∥n时,m=n不必定成立,所以B不正确;C中,当>时,4>4不必定建立,所以C不正确;D中,当>b时,ababa有A>B,所以“a>b”是“A>B”的充分条件,所以D不正确.应选A.14.设p:2≤x≤1;q:(x-a)(x-a-1)≤0,若p是q的充分不用要条件,则实数a的取值范围是()4A.0,1B.0,12211C.0,2D.0,2分析:选B∵q:a≤x≤a+1,p是q的充分不用要条件,11a≤,∴2解得0≤a≤2.应选B.a+1≥1,5.已知对于x的方程(1-a)x2+(a+2)x-4=0(a∈R),则该方程有两个正根的充要条件是________.分析:方程(1-a)x2+(a+2)x-4=01-a≠0,有两个实根的充要条件是≥0,a≠1,a≠1,即2+-a?a≤2或a≥10.a+设此时方程的两根分别为x1,x2,则方程有两个正根的充要条件是≠1,aa≠1,a≤2或a≥10,a≤2或a≥10,+2?1<a≤2或a≥10.x1+x2>0,?a-1>0,xx>0412>0a-1答案:(1,2]∪[10,+∞)6.已知“-1<<”是“方程x2+y2+kx+3+k2=0表示圆”的充分条件,则实数mkmy的取值范围是________.分析:当方程x2+y2+kx+3y+k2=0表示圆时,k2+3-4k2>0,解得-1<k<1,所以-1<m≤1,即实数m的取值范围是(-1,1].答案:(-1,1]7.已知p:x2-8x-20>0,q:x2-2x+1-a2>0.若p是q的充分条件,求正实数a的取值范围.解:不等式x2-8x-20>0的解集为A={x|x>10或x<-2};不等式x2-2x+1-a2>0的解集为B={x|x>1+a或x<1-a,a>0}.5依题意p?q,所以A?B.a>0,于是有1+a≤10,解得0<≤3.a1-a≥-2,所以正实数a的取值范围是(0,3].8.求二次函数y=-x2+mx-1的图象与两头点为A(0,3),B(3,0)的线段AB有两个不同的交点的充要条件.解:线段AB的方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论