版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年广东省惠州市普通高校对口单招数学自考真题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.在等差数列{an}中,a1=2,a3+a5=10,则a7=()A.5B.8C.10D.14
2.A.
B.
C.
D.U
3.实数4与16的等比中项为A.-8
B.C.8
4.已知角α的终边经过点(-4,3),则cosα()A.4/5B.3/5C.-3/5D.-4/5
5.某高职院校为提高办学质量,建设同时具备理论教学和实践教学能力的“双师型”教师队伍,现决定从3名男教师和3名女教师中任选2人一同到某企业实训,则选中的2人都是男教师的概率为()A.
B.
C.
D.
6.A.B.C.D.
7.A.B.C.
8.“没有公共点”是“两条直线异面”的()A.充分而不必要条件B.充分必要条件C.必要而不充分条件D.既不充分也不必要条件
9.A.B.C.D.
10.△ABC的内角A,B,C的对边分别为a,b,c已知a=,c=2,cosA=2/3,则b=()A.
B.
C.2
D.3
二、填空题(10题)11.以点(1,0)为圆心,4为半径的圆的方程为_____.
12.某校有高中生1000人,其中高一年级400人,高二年级300人,高三年级300人,现釆取分层抽样的方法抽取一个容量为40的样本,则高三年级应抽取的人数是_____人.
13.设{an}是公比为q的等比数列,且a2=2,a4=4成等差数列,则q=
。
14.
15.不等式(x-4)(x+5)>0的解集是
。
16.i为虚数单位,1/i+1/i3+1/i5+1/i7____.
17.展开式中,x4的二项式系数是_____.
18.log216+cosπ+271/3=
。
19.已知正实数a,b满足a+2b=4,则ab的最大值是____________.
20.
三、计算题(5题)21.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
22.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
23.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。
24.在等差数列{an}中,前n项和为Sn
,且S4
=-62,S6=-75,求等差数列{an}的通项公式an.
25.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
四、简答题(10题)26.设拋物线y2=4x与直线y=2x+b相交A,B于两点,弦AB长,求b的值
27.已知函数:,求x的取值范围。
28.已知抛物线y2=4x与直线y=2x+b相交与A,B两点,弦长为,求b的值。
29.点A是BCD所在平面外的一点,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求证平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
30.已知A,B分别是椭圆的左右两个焦点,o为坐标的原点,点P(-1,)在椭圆上,线段PB与y轴的焦点M为线段PB的中心点,求椭圆的标准方程
31.据调查,某类产品一个月被投诉的次数为0,1,2的概率分别是0.4,0.5,0.1,求该产品一个月内被投诉不超过1次的概率
32.一条直线l被两条直线:4x+y+6=0,3x-5y-6=0截得的线段中点恰好是坐标原点,求直线l的方程.
33.若α,β是二次方程的两个实根,求当m取什么值时,取最小值,并求出此最小值
34.计算
35.在1,2,3三个数字组成无重复数字的所有三位数中,随机抽取一个数,求:(1)此三位数是偶数的概率;(2)此三位数中奇数相邻的概率.
五、解答题(10题)36.李经理按照市场价格10元/千克在本市收购了2000千克香菇存放人冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式;(2)李经理如果想获得利润22500元,需将这批香菇存放多少天后出售?(提示:利润=销售总金额一收购成本一各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?
37.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
38.
39.已知公差不为零的等差数列{an}的前4项和为10,且a2,a3,a7成等比数列.(1)求通项公式an;(2)设bn=2an求数列{bn}的前n项和Sn.
40.
41.
42.数列的前n项和Sn,且求(1)a2,a3,a4的值及数列的通项公式(2)a2+a4+a6++a2n的值
43.如图,ABCD-A1B1C1D1为长方体.(1)求证:B1D1//平面BC1D;(2)若BC=CC1,,求直线BC1与平面ABCD所成角的大小.
44.已知函数f(x)=4cosxsin(x+π/6)-1.(1)求f(x)的最小正周期;(2)求f(x)在区间[-π/6,π/4]上的最大值和最小值.
45.设函数f(x)=x3-3ax+b(a≠0).(1)若曲线y=f(x)在点(2,f(x))处与直线y=8相切,求a,b的值;(2)求函数f(x)的单调区间与极值点.
六、单选题(0题)46.若102x=25,则10-x等于()A.
B.
C.
D.
参考答案
1.B等差数列的性质.由等差数列的性质得a1+a7=a3+a5,因为a1=2,a3+a5=10,所以a7=8,
2.B
3.B
4.D三角函数的定义.记P(-4,3),则x=-4,y=3,r=|OP|=,故cosα=x/r=-4/5
5.C
6.A
7.C
8.C
9.A
10.D解三角形的余弦定理.由余弦定理,得5=b2+22-2×b×2×2/3,解得b=3(b=1/3舍去),
11.(x-1)2+y2=16圆的方程.当圆心坐标为(x0,y0)时,圆的-般方程为(x-x0)+(y-y0)=r2.所以,(x-1)2+y2=16
12.12,高三年级应抽人数为300*40/1000=12。
13.
,由于是等比数列,所以a4=q2a2,得q=。
14.45
15.{x|x>4或x<-5}方程的根为x=4或x=-5,所以不等式的解集为{x|x>4或x<-5}。
16.0.复数的运算.1/i+1/i3+1/i5+1/i7=-i+i-i+i=0
17.7
18.66。log216+cosπ+271/3=4+(-1)+3=6。
19.2基本不等式求最值.由题
20.0.4
21.
22.
23.
24.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
25.
26.由已知得整理得(2x+m)2=4x即∴再根据两点间距离公式得
27.
X>4
28.
29.分析:本题考查面面垂直的证明,考查二面角的正切值的求法。(1)推导出CD⊥AB,AB⊥AC,由此能证明平面ABD⊥平面ACD。
(2)取BC中点O,以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BD-C的正切值。解答:证明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中点O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,
30.点M是线段PB的中点又∵OM丄AB,∴PA丄AB则c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此椭圆的标准方程为
31.设事件A表示“一个月内被投诉的次数为0”,事件B表示“一个月内被投诉的次数为1”∴P(A+B)=P(A)+P(B)=0.4+0.5=0.9
32.
33.
34.
35.1,2,3三个数字组成无重复数字的所有三位数共有(1)其中偶数有,故所求概率为(2)其中奇数相邻的三位数有个故所求概率为
36.(1)由题意,y与x之间的函数关系式为y=(10+0.5x)(2000-6x)=-3x2+940x+20000(l≤x≤110).(2)由题(-3x2+940x+20000)-(10×2000+340x)=22500;化简得,x2-200x+7500=0;解得x1=50,x2=150(不合题意,舍去);因此,李经理想获得利润22500,元,需将这批香菇存放50天后出售.(3)设利润为w,则由(2)得,w=(―3x2+940x+20000)-(10×2000+340x)=-32+600x=-3(x-100)2;因此,当x=100时,wmax=30000;又因为100∈(0,110),所以李经理将这批香菇存放100天后出售可获得最大利润为30000元.
37.
38.
39.(1)由题意知
40.
41.
42.
43.(1)ABCD-A1B1C1D1为长方体,所以B1D1//BD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 跨国合同纠纷处理
- 轮胎采购合同示范
- 软件技术合作与开发合同
- 软件购置合同格式示例
- 轻松学好高中化学
- 进口手表零售购销合同
- 进度合作合同协议
- 迟到员工的决心与誓言保证书
- 配电箱设备安装施工合同工程地点
- 酒店转让合同的履行监管
- 消保审查实施细则(2023年版)
- 央视大火案例课件
- 导线应力弧垂计算软件
- 人教版初中数学教学计划
- 2019新人教版高中英语必修一全册课文及翻译(中英文Word)
- 六年级上册数学课件-7.1 百分数的认识 ︳青岛版
- 临床试验生物样本采集与处理的标准操作规程
- 陕2022TJ 067 厨卫装配式钢丝网混凝土排气道系统建筑构造图集
- GB/T 21566-2008危险品爆炸品摩擦感度试验方法
- 环评爱好者论坛-水质模型
- GB/T 1303.6-2009电气用热固性树脂工业硬质层压板第6部分:酚醛树脂硬质层压板
评论
0/150
提交评论