2022-2023学年黑龙江省伊春市普通高校对口单招数学自考模拟考试(含答案)_第1页
2022-2023学年黑龙江省伊春市普通高校对口单招数学自考模拟考试(含答案)_第2页
2022-2023学年黑龙江省伊春市普通高校对口单招数学自考模拟考试(含答案)_第3页
2022-2023学年黑龙江省伊春市普通高校对口单招数学自考模拟考试(含答案)_第4页
2022-2023学年黑龙江省伊春市普通高校对口单招数学自考模拟考试(含答案)_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年黑龙江省伊春市普通高校对口单招数学自考模拟考试(含答案)学校:________班级:________姓名:________考号:________

一、单选题(10题)1.直线ax+by+b-a=0与圆x2+y2-x-2=0的位置关系是()A.相离B.相交C.相切D.无关

2.若集合M={3,1,a-1},N={-2,a2},N为M的真子集,则a的值是()A.-1

B.1

C.0

D.

3.不等式lg(x-1)的定义域是()A.{x|x<0}B.{x|1<x}C.{x|x∈R}D.{x|0<x<1}

4.以点(2,0)为圆心,4为半径的圆的方程为()A.(x-2)2+y2=16

B.(x-2)2+y2=4

C.(x+2)2+y2=46

D.(x+2)2+y2=4

5.设a=log32,b=log52,c=log23,则()A.a>c>bB.b>c>aC.c>b>aD.c>a>b

6.已知logN10=,则N的值是()A.

B.

C.100

D.不确定

7.若f(x)=1/log1/2(2x+1),则f(x)的定义域为()A.(-1/2,0)B.(-1/2,+∞)C.(-1/2,0)∪(0,+∞)D.(-1/2,2)

8.从1,2,3,4这4个数中任取两个数,则取出的两数都是奇数的概率是()A.2/3B.1/2C.1/6D.1/3

9.直线2x-y+7=0与圆(x-b2)+(y-b2)=20的位置关系是()A.相离B.相交但不过圆心C.相交且过圆心D.相切

10.A.(6,7)B.(2,-1)C.(-2,1)D.(7,6)

二、填空题(10题)11.等差数列中,a2=2,a6=18,则S8=_____.

12.

13.

14.等差数列的前n项和_____.

15.

16.当0<x<1时,x(1-x)取最大值时的值为________.

17.函数y=x2+5的递减区间是

18.

19.若复数,则|z|=_________.

20.过点(1,-1),且与直线3x-2y+1=0垂直的直线方程为

三、计算题(5题)21.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

22.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.

23.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

24.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.

25.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

四、简答题(10题)26.在等差数列中,已知a1,a4是方程x2-10x+16=0的两个根,且a4>a1,求S8的值

27.在拋物线y2=12x上有一弦(两端点在拋物线上的线段)被点M(1,2)平分.(1)求这条弦所在的直线方程;(2)求这条弦的长度.

28.已知函数,且.(1)求a的值;(2)求f(x)函数的定义域及值域.

29.证明:函数是奇函数

30.如图,在直三棱柱中,已知(1)证明:AC丄BC;(2)求三棱锥的体积.

31.一条直线l被两条直线:4x+y+6=0,3x-5y-6=0截得的线段中点恰好是坐标原点,求直线l的方程.

32.设拋物线y2=4x与直线y=2x+b相交A,B于两点,弦AB长,求b的值

33.求证

34.求k为何值时,二次函数的图像与x轴(1)有2个不同的交点(2)只有1个交点(3)没有交点

35.求到两定点A(-2,0)(1,0)的距离比等于2的点的轨迹方程

五、解答题(10题)36.给定椭圆C:x2/a2+y2/b2(a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆已知椭圆C的离心率为/2,且经过点(0,1).(1)求椭圆C的方程;(2)求直线l:x—y+3=0被椭圆C的伴随圆C1所截得的弦长.

37.李经理按照市场价格10元/千克在本市收购了2000千克香菇存放人冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式;(2)李经理如果想获得利润22500元,需将这批香菇存放多少天后出售?(提示:利润=销售总金额一收购成本一各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?

38.己知sin(θ+α)=sin(θ+β),求证:

39.求函数f(x)=x3-3x2-9x+5的单调区间,极值.

40.设函数f(x)=x3-3ax+b(a≠0).(1)若曲线y=f(x)在点(2,f(x))处与直线y=8相切,求a,b的值;(2)求函数f(x)的单调区间与极值点.

41.

42.如图,在四棱锥P—ABCD中,平面PAD丄平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.连接BD求证:(1)直线EF//平面PCD;(2)平面BEF丄平面PAD.

43.已知递增等比数列{an}满足:a2+a3+a4=14,且a3+1是a2,a4的等差中项.(1)求数列{an}的通项公式;(2)若数列{an}的前n项和为Sn,求使Sn<63成立的正整数n的最大值.

44.已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为,其中左焦点F(-2,0).(1)求椭圆C的方程;(2)若直线:y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆:x2+y2=l上,求m的值.

45.

六、单选题(0题)46.复数z=2i/1+i的共轭复数是()A.1+iB.1-iC.1/2+1/2iD.1/2-1/2i

参考答案

1.B

2.A

3.B

4.A圆的方程.当圆心坐标为(x0,y0)时,圆的-般方程为(x-x0)2+(y-y0)2=r2.

5.D数值大小的比较.a=㏒32<㏒33=l,c=㏒23>㏒22=l,而b=㏒52<㏒1/32=a,∴b<a<c

6.C由题可知:N1/2=10,所以N=100.

7.C函数的定义域.㏒1/2(2x+l)≠0,所以2x+l>0,2x+l≠1.所以x∈(-1/2,0)∪(0,+∞).

8.C古典概型.任意取到两个数的方法有6种:1,2;1,3;1,4;2,3;2,4;3,4;,满足题意的有1种:1,3;则要求的概率为1/6.

9.D由题可知,直线2x-y+7=0到圆(x-b)2+(y-b)2=20的距离等于半径,所以二者相切。

10.A

11.96,

12.

13.-1

14.2n,

15.-16

16.1/2均值不等式求最值∵0<

17.(-∞,0]。因为二次函数的对称轴是x=0,开口向上,所以递减区间为(-∞,0]。

18.

19.

复数的模的计算.

20.

21.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

22.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

23.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

24.

25.

26.方程的两个根为2和8,又∴又∵a4=a1+3d,∴d=2∵。

27.∵(1)这条弦与抛物线两交点

28.(1)(2)

29.证明:∵∴则,此函数为奇函数

30.

31.

32.由已知得整理得(2x+m)2=4x即∴再根据两点间距离公式得

33.

34.∵△(1)当△>0时,又两个不同交点(2)当A=0时,只有一个交点(3)当△<0时,没有交点

35.

36.

37.(1)由题意,y与x之间的函数关系式为y=(10+0.5x)(2000-6x)=-3x2+940x+20000(l≤x≤110).(2)由题(-3x2+940x+20000)-(10×2000+340x)=22500;化简得,x2-200x+7500=0;解得x1=50,x2=150(不合题意,舍去);因此,李经理想获得利润22500,元,需将这批香菇存放50天后出售.(3)设利润为w,则由(2)得,w=(―3x2+940x+20000)-(10×2000+340x)=-32+600x=-3(x-100)2;因此,当x=100时,wmax=30000;又因为100∈(0,110),所以李经理将这批香菇存放100天后出售可获得最大利润为30000元.

38.

39.f(x)=x3-6x-9=3(x+1)(x-3)令f(x)>0,∴x>3或x,-1.令f(x)<0时,-1<x<3.∴f(x)单调增区间为(-∞,-1],[3,+∞),单调减区间为[-1,3].f(x)极大值为f(-1)=l0,f(x)极小值为f(3)=-22.

40.(1)f(x)=3x2-3a,∵曲线:y=f(x)在点(2,f(x))处与直线y=8相切,

41.

42.(1)如图,在APAD中,因为E,F分别为AP,AD的中点,所以EF//PD又因为EF不包含于平面PCD,PD包含于平面PCD,所以直线EF//平面PCD.(2)因为AB=AD,∠BAD=60°,所以△ABD为正三角形.因为F是AD的中点,所以BF⊥AD因为平面PAD⊥平面ABCD,所以B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论