版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年广东省汕头市普通高校高职单招数学二模测试卷(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.某高职院校为提高办学质量,建设同时具备理论教学和实践教学能力的“双师型”教师队伍,现决定从3名男教师和3名女教师中任选2人一同到某企业实训,则选中的2人都是男教师的概率为()A.
B.
C.
D.
2.A.
B.
C.
3.在等差数列{an}中,如果a3+a4+a5+a6+a7+a8=30,则数列的前10项的和S10为()A.30B.40C.50D.60
4.
5.A.0
B.C.1
D.-1
6.A.偶函数B.奇函数C.既不是奇函数,也不是偶函数D.既是奇函数,也是偶函数
7.A.2B.3C.4
8.“对任意X∈R,都有x2≥0”的否定为()A.存在x0∈R,使得x02<0
B.对任意x∈R,都有x2<0
C.存在x0∈R,使得x02≥0
D.不存在x∈R,使得x2<0
9.若不等式|ax+2|<6的解集是{x|-1<x<2},则实数a等于()A.8B.2C.-4D.-8
10.A.{-3}
B.{3}
C.{-3,3}
D.
11.已知sin(5π/2+α)=1/5,那么cosα=()A.-2/5B.-1/5C.1/5D.2/5
12.下列函数为偶函数的是A.B.C.
13.A.7.5
B.C.6
14.若向量A.(4,6)B.(-4,-6)C.(-2,-2)D.(2,2)
15.以坐标轴为对称轴,离心率为,半长轴为3的椭圆方程是()A.
B.或
C.
D.或
16.A.B.C.D.
17.A.1B.2C.3D.4
18.A.10B.-10C.1D.-1
19.贿圆x2/7+y2/3=1的焦距为()A.4
B.2
C.2
D.2
20.函数f(x)=log2(3x-1)的定义域为()A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)
二、填空题(20题)21.拋物线的焦点坐标是_____.
22.己知三个数成等差数列,他们的和为18,平方和是116,则这三个数从小到大依次是_____.
23.函数f(x)=+㏒2x(x∈[1,2])的值域是________.
24.若复数,则|z|=_________.
25.已知_____.
26.
27.若事件A与事件ā互为对立事件,且P(ā)=P(A),则P(ā)=
。
28.双曲线x2/4-y2/3=1的虚轴长为______.
29.长方体中,具有公共顶点A的三个面的对角线长分别是2,4,6,那么这个长方体的对角线的长是_____.
30.已知i为虚数单位,则|3+2i|=______.
31.若展开式中各项系数的和为128,则展开式中x2项的系数为_____.
32.如图是一个程序框图,若输入x的值为8,则输出的k的值为_________.
33.在平面直角坐标系xOy中,直线2x+ay-1=0和直线(2a-1)x-y+1=0互相垂直,则实数a的值是______________.
34.已知_____.
35.
36.执行如图所示的程序框图,若输入的k=11,则输出的S=_______.
37.已知拋物线的顶点为原点,焦点在y轴上,拋物线上的点M(m,-2)到焦点的距离为4,则m的值为_____.
38.某校有高中生1000人,其中高一年级400人,高二年级300人,高三年级300人,现釆取分层抽样的方法抽取一个容量为40的样本,则高三年级应抽取的人数是_____人.
39.若ABC的内角A满足sin2A=则sinA+cosA=_____.
40.抛物线y2=2x的焦点坐标是
。
三、计算题(5题)41.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。
42.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
43.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
44.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
45.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
四、简答题(5题)46.化简
47.如图,在直三棱柱中,已知(1)证明:AC丄BC;(2)求三棱锥的体积.
48.拋物线的顶点在原点,焦点为椭圆的左焦点,过点M(-1,-1)引抛物线的弦使M为弦的中点,求弦长
49.已知的值
50.点A是BCD所在平面外的一点,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求证平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
五、解答题(5题)51.已知圆C的圆心在直线y=x上,半径为5且过点A(4,5),B(1,6)两点.(1)求圆C的方程;(2)过点M(-2,3)的直线l被圆C所截得的线段的长为8,求直线l的方程.
52.
53.成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{bn}中的b3,b4,b5(1)求数列{bn}的通项公式;(2)数列{bn}的前n项和为Sn,求证:数列{Sn+5/4}是等比数列
54.已知函数f(x)=x3-3x2-9x+1.(1)求函数f(x)的单调区间.(2)若f(x)-2a+1≥0对Vx∈[-2,4]恒成立,求实数a的取值范围.
55.若x∈(0,1),求证:log3X3<log3X<X3.
六、证明题(2题)56.若x∈(0,1),求证:log3X3<log3X<X3.
57.己知
a
=(-1,2),b
=(-2,1),证明:cos〈a,b〉=4/5.
参考答案
1.C
2.B
3.C
4.C
5.D
6.A
7.B
8.A命题的定义.根据否定命题的定义可知命题的否定为:存在x0∈R使得x02<0,
9.C
10.C
11.C同角三角函数的计算sin(5π/2+α)=sin(π/2+α)=cosα=-1/5.
12.A
13.B
14.A向量的运算.=(l,2)+(3,4)=(4,6).
15.B由题意可知,焦点在x轴或y轴上,所以标准方程有两个,而a=3,c/a=1/3,所以c=1,b2=8,因此答案为B。
16.C
17.B
18.C
19.A椭圆的定义.因为a2=7,b2=3,所以c2-a2-b2=4,c=2,2c=4.
20.A函数的定义.由3x-1>0,得3x>1,即3x>30,∴x>0.
21.
,因为p=1/4,所以焦点坐标为.
22.4、6、8
23.[2,5]函数值的计算.因为y=2x,y=㏒2x为増函数,所以y=2x+㏒2x在[1,2]上单调递增,故f(x)∈[2,5].
24.
复数的模的计算.
25.-1,
26.
27.0.5由于两个事件是对立事件,因此两者的概率之和为1,又两个事件的概率相等,因此概率均为0.5.
28.2双曲线的定义.b2=3,.所以b=.所以2b=2.
29.
30.
复数模的计算.|3+2i|=
31.-189,
32.4程序框图的运算.执行循环如下:x=2×8+1=17,k=1;x=2×17+1=35,k=2时;x=2×35+1=71,k=3时;x=2×71+1=143>115,k=4,此时满足条件.故输出k的值为4.
33.2/3两直线的位置关系.由题意得-2/a×(2a-1)=-1,解得a=2/3
34.
35.75
36.15程序框图的运算.模拟程序的运行,可得k=11,n=1,S=1不满足条件S>11,执行循环体,n=2,S=3,不满足条件S>11,执行循环体,n=3,S=6,不满足条件S>11,执行循环体,n=4,S=10,不满足条件S>11,执行循环体,N=5,S=15,此时,满足条件S>11,退出循环,输出S的值为15.故答案为15.
37.±4,
38.12,高三年级应抽人数为300*40/1000=12。
39.
40.(1/2,0)抛物线y2=2px(p>0)的焦点坐标为F(P/2,0)。∵抛物线方程为y2=2x,
∴2p=2,得P/2=1/2
∵抛物线开口向右且以原点为顶点,
∴抛物线的焦点坐标是(1/2,0)。
41.
42.
43.
44.
45.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
46.
47.
48.
49.
∴∴则
50.分析:本题考查面面垂直的证明,考查二面角的正切值的求法。(1)推导出CD⊥AB,AB⊥AC,由此能证明平面ABD⊥平面ACD。
(2)取BC中点O,以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BD-C的正切值。解答:证明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中点O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,
51.(1)由题意,设圆心坐标为(a,a),则(a,-1)2+(a-6)2=(a-4)2+(a-5)2=25,a=1;所以圆C的方程(x-1)2+(y-1)2=25.
52.
53.(1)设成等差数列的三个正数分别为a-d,a,a+d依
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东理工学院《西方思想经典导读》2023-2024学年第一学期期末试卷
- 广东警官学院《C设计》2023-2024学年第一学期期末试卷
- 广东江门中医药职业学院《催化材料导论》2023-2024学年第一学期期末试卷
- 广东机电职业技术学院《药物结构解析》2023-2024学年第一学期期末试卷
- 广东环境保护工程职业学院《电子竞技场馆运营与管理》2023-2024学年第一学期期末试卷
- 广东工业大学《音乐学科课程与教学论》2023-2024学年第一学期期末试卷
- 广东第二师范学院《计算流体力学与传热学》2023-2024学年第一学期期末试卷
- 赣州职业技术学院《建筑信息模型》2023-2024学年第一学期期末试卷
- 学干培训课件
- 赣南卫生健康职业学院《楷书技法》2023-2024学年第一学期期末试卷
- 6.2《青纱帐-甘蔗林》教学设计-【中职专用】高一语文(高教版2023·基础模块下册)
- 25王戎不取道旁李公开课一等奖创新教学设计
- 科室患者投诉处理管理制度
- 中国历史文化知识竞赛100题(含答案)
- 学前儿童健康教育活动设计智慧树知到期末考试答案章节答案2024年云南国防工业职业技术学院
- 室内设计专业建设发展规划报告
- DL-T 5148-2021水工建筑物水泥灌浆施工技术条件-PDF解密
- 门诊叙事护理课件
- 老年人防跌倒知识讲座
- 福建省厦门市翔安区2023-2024学年八年级上学期期末语文试题
- 村庙修建合同
评论
0/150
提交评论