版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年四川省眉山市普通高校高职单招数学月考卷(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为()A.内切B.相交C.外切D.相离
2.如图所示的程序框图,当输人x的值为3时,则其输出的结果是()A.-1/2B.1C.4/3D.3/4
3.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法
4.在等差数列{an}中,若a3+a17=10,则S19等于()A.65B.75C.85D.95
5.若logmn=-1,则m+3n的最小值是()A.
B.
C.2
D.5/2
6.设a,b为实数,则a2=b2的充要条件是()A.a=bB.a=-bC.a2=b2
D.|a|=|b|
7.下列立体几何中关于线面的四个命题正确的有()(1)垂直与同一平面的两个平面平行(2)若异面直线a,b不垂直,则过a的任何一个平面与b都不垂直(3)垂直与同一平面的两条直线一定平行(4)垂直于同一直线两个平面一定平行A.1个B.2个C.3个D.4个
8.在等比数列中,a1+a2=162,a3+a4=18,那么a4+a5等于()A.6B.-6C.±2D.±6
9.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4B.5C.6D.7
10.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m(件)与x售价(元)满足一次函数:m=162-3x,若要每天获得最大的销售利润,每件商品的售价应定为()A.30元B.42元C.54元D.越高越好
11.两个平面之间的距离是12cm,—条直线与他们相交成的60°角,则这条直线夹在两个平面之间的线段长为()A.cm
B.24cm
C.cm
D.cm
12.若102x=25,则10-x等于()A.
B.
C.
D.
13.A.10B.5C.2D.12
14.下表是某厂节能降耗技术改造后生产某产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据,用最小二乘法得到y关于x的线性回归方程y^=0.7x+a,则a=()A.0.25B.0.35C.0.45D.0.55
15.圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=()A.-4/3
B.-3/4
C.
D.2
16.直线2x-y+7=0与圆(x-b2)+(y-b2)=20的位置关系是()A.相离B.相交但不过圆心C.相交且过圆心D.相切
17.椭圆9x2+16y2=144短轴长等于()A.3B.4C.6D.8
18.直线x-y=0,被圆x2+y2=1截得的弦长为()A.
B.1
C.4
D.2
19.已知互为反函数,则k和b的值分别是()A.2,
B.2,
C.-2,
D.-2,
20.cos215°-sin215°=()A.
B.
C.
D.-1/2
二、填空题(20题)21.不等式的解集为_____.
22.
23.以点(1,2)为圆心,2为半径的圆的方程为_______.
24.
25.10lg2=
。
26.在△ABC中,若acosA=bcosB,则△ABC是
三角形。
27.己知三个数成等差数列,他们的和为18,平方和是116,则这三个数从小到大依次是_____.
28.
29.已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的表面积为_____.
30.
31.1+3+5+…+(2n-b)=_____.
32.在△ABC中,C=60°,AB=,BC=,那么A=____.
33.
34.若函数_____.
35.
36.若ABC的内角A满足sin2A=则sinA+cosA=_____.
37.i为虚数单位,1/i+1/i3+1/i5+1/i7____.
38.
39.若=_____.
40.五位同学站成一排,其中甲既不站在排头也不站在排尾的排法有_____种.
三、计算题(5题)41.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
42.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。
43.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
44.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
45.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
四、简答题(5题)46.已知函数.(1)求f(x)的定义域;(2)判断f(x)的奇偶性,并加以证明;(3)a>1时,判断函数的单调性并加以证明。
47.己知边长为a的正方形ABCD,PA丄底面ABCD,PA=a,求证,PC丄BD
48.以点(0,3)为顶点,以y轴为对称轴的拋物线的准线与双曲线3x2-y2+12=0的一条准线重合,求抛物线的方程。
49.设等差数列的前n项数和为Sn,已知的通项公式及它的前n项和Tn.
50.已知函数(1)求函数f(x)的最小正周期及最值(2)令判断函数g(x)的奇偶性,并说明理由
五、解答题(5题)51.已知椭圆的中心为原点,焦点在x轴上,离心率为,且经过点M(4,1),直线l:y=x+m交椭圆于异于M的不同两点A,B直线MA,MB与x轴分别交于点E,F.(1)求椭圆的标准方程;(2)求m的取值范围.
52.如图,一辆汽车在一条水平的公路上向正西行驶,在A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,求此山的高度CD。
53.
54.已知函数f(x)=2sin(x-π/3).(1)写出函数f(x)的周期;(2)将函数f(x)图象上所有的点向左平移π/3个单位,得到函数g(x)的图象,写出函数g(x)的表达式,并判断函数g(x)的奇偶性.
55.
六、证明题(2题)56.己知sin(θ+α)=sin(θ+β),求证:
57.△ABC的三边分别为a,b,c,为且,求证∠C=
参考答案
1.B圆与圆的位置关系,两圆相交
2.B程序框图的运算.当输入的值为3时,第一次循环时,x=3-3=0,所以x=0≤0成立,所以y=0.50=1.输出:y=1.故答案为1.
3.C为了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,这种方式具有代表性,比较合理的抽样方法是分层抽样。
4.D
5.B对数性质及基本不等式求最值.由㏒mn=-1,得m-1==n,则mn=1.由于m>0,n>0,∴m+3n≥2.
6.D
7.B垂直于同一平面的两个平面不一定平行;垂直于一平面的直线与该平面内的所有直线垂直;垂直于同一平面的两条直线不一定平行也可能共线;垂直于同一直线的两个平面平行。
8.D设公比等于q,则由题意可得,,解得,或。当时,,当时,,所以结果为。
9.C分层抽样方法.四类食品的比例为4:1:3:2,则抽取的植物油类的数量为20×1/10=2,抽取的果蔬类的数量为20×2/10=4,二者之和为6,
10.B函数的实际应用.设日销售利润为y元,则y=(x-30)(162-3x),30≤x≤54,将上式配方得y=-3(x-42)2+432,所以x=42时,利润最大.
11.A
12.B
13.A
14.B线性回归方程的计算.由题可以得出
15.A点到直线的距离公式.由圆的方程x2+y2-2x-8y+130得圆心坐标为(1,4),由点到直线的距离公式得d=,解之得a=-4/3.
16.D由题可知,直线2x-y+7=0到圆(x-b)2+(y-b)2=20的距离等于半径,所以二者相切。
17.C
18.D直线与圆相交的性质.直线x-y=0过圆心(0,0),故该直线被圆x2+y2=1所截弦长为圆的直径的长度2.
19.B因为反函数的图像是关于y=x对称,所以k=2.然后把一式中的x用y的代数式表达,再把x,y互换,代入二式,得到m=-3/2.
20.B余弦的二倍角公式.由余弦的二倍角公式cos2α=cos2α-sin2α可得cos215°-sin215°=cos30°=/2,
21.-1<X<4,
22.-2/3
23.(x-1)2+(y-2)2=4圆标准方程.圆的标准方程为(x-a)2+(y-2)2=r2,a=1,b=2,r=2
24.
25.lg102410lg2=lg1024
26.等腰或者直角三角形,
27.4、6、8
28.π
29.6π圆柱的侧面积计算公式.利用圆柱的侧面积公式求解,该圆柱的侧面积为27x1x2=4π,一个底面圆的面积是π,所以该圆柱的表面积为4π+27π=6π.
30.16
31.n2,
32.45°.解三角形的正弦定理.由正弦定理知BC/sinA=AB/sinC,即/sinA=/sin60°所以sinA=/2,又由题知BC<AB,得A<C,所以A=45°.
33.10函数值的计算.由=3,解得a=10.
34.1,
35.-7/25
36.
37.0.复数的运算.1/i+1/i3+1/i5+1/i7=-i+i-i+i=0
38.1-π/4
39.
,
40.72,
41.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
42.
43.
44.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
45.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
46.(1)-1<x<1(2)奇函数(3)单调递增函数
47.证明:连接ACPA⊥平面ABCD,PC是斜线,BD⊥ACPC⊥BD(三垂线定理)
48.由题意可设所求抛物线的方程为准线方程为则y=-3代入得:p=12所求抛物线方程为x2=24(y-3)
49.(1)∵
∴又∵等差数列∴∴(2)
50.(1)(2)∴又∴函数是偶函数
51.(1)设椭圆的方程为x2/a2+y2/b2=1因为e=,所以a2=4b2,又因为椭圆过点M(4,1),所以16/a2+1/b2=1,解得b2=5,a2=20,故椭圆标准方x2/20+y2/5=1(2)将y=m+x:代入x2/20+y2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东理工学院《西方思想经典导读》2023-2024学年第一学期期末试卷
- 广东警官学院《C设计》2023-2024学年第一学期期末试卷
- 广东江门中医药职业学院《催化材料导论》2023-2024学年第一学期期末试卷
- 广东机电职业技术学院《药物结构解析》2023-2024学年第一学期期末试卷
- 广东环境保护工程职业学院《电子竞技场馆运营与管理》2023-2024学年第一学期期末试卷
- 广东工业大学《音乐学科课程与教学论》2023-2024学年第一学期期末试卷
- 广东第二师范学院《计算流体力学与传热学》2023-2024学年第一学期期末试卷
- 赣州职业技术学院《建筑信息模型》2023-2024学年第一学期期末试卷
- 学干培训课件
- 赣南卫生健康职业学院《楷书技法》2023-2024学年第一学期期末试卷
- 6.2《青纱帐-甘蔗林》教学设计-【中职专用】高一语文(高教版2023·基础模块下册)
- 25王戎不取道旁李公开课一等奖创新教学设计
- 科室患者投诉处理管理制度
- 中国历史文化知识竞赛100题(含答案)
- 学前儿童健康教育活动设计智慧树知到期末考试答案章节答案2024年云南国防工业职业技术学院
- 室内设计专业建设发展规划报告
- DL-T 5148-2021水工建筑物水泥灌浆施工技术条件-PDF解密
- 门诊叙事护理课件
- 老年人防跌倒知识讲座
- 福建省厦门市翔安区2023-2024学年八年级上学期期末语文试题
- 村庙修建合同
评论
0/150
提交评论