2022-2023学年惠州市第五中学八年级数学第二学期期末达标检测模拟试题含解析_第1页
2022-2023学年惠州市第五中学八年级数学第二学期期末达标检测模拟试题含解析_第2页
2022-2023学年惠州市第五中学八年级数学第二学期期末达标检测模拟试题含解析_第3页
2022-2023学年惠州市第五中学八年级数学第二学期期末达标检测模拟试题含解析_第4页
2022-2023学年惠州市第五中学八年级数学第二学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.若关于的一元二次方程的常数项为0,则的值等于()A.1 B.3 C.1或3 D.02.已知点P(1,-3)在反比例函数的图象上,则的值是A.3 B.-3 C. D.3.如图,在△ABC中,∠ACB=90°,CE⊥AB,垂足为E,点D是边AB的中点,AB=20,S△CAD=30,则DE的长度是()A.6 B.8 C. D.94.计算的结果是()A.﹣2 B.﹣1 C.1 D.25.甲、乙、丙、丁四位同学在三次数学测验中,他们成绩的平均数都是85分,方差分别是:S甲2=3.8,S乙2=2.7,S丙2=6.2,S丁2=5.1,则四个人中成绩最稳定的是()A.j甲 B.乙 C.丙 D.丁6.如图,,两地被池塘隔开,小明想测出、间的距离;先在外选一点,然后找出,的中点,,并测量的长为,由此他得到了、间的距离为()A. B. C. D.7.如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC的角平分线AF与AB的垂直平分线DF交于点F,连接CF,BF,则∠BCF的度数为()A.30° B.40° C.50° D.45°8.如图,正方形的边长为,动点从点出发,沿的路径以每秒的速度运动(点不与点、点重合),设点运动时间为秒,四边形的面积为,则下列图像能大致反映与的函数关系是()A. B.C. D.9.如图,把经过一定的变换得到,如果上点的坐标为,那么这个点在中的对应点的坐标为()A. B. C. D.10.如图,▱ABCD的周长为16cm,AC,BD相交于点O,OE⊥AC交AD于点E,则△DCE的周长为()A.4cm B.6cm C.8cm D.10cm二、填空题(每小题3分,共24分)11.如图,在中,,,点在上,且,点在上,连结,若与相似,则_____________.12.有一组数据如下:3、7、4、6、5,那么这组数据的方差是_____.13.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E为BC边的中点,连接OE,若AB=4,则线段OE的长为_____.14.已知命题:全等三角形的对应角相等.这个命题的逆命题是:__________.15.关于x的方程的一个根为1,则m的值为.16.方程=2的解是_________17.直线y=﹣2x﹣1向上平移3个单位,再向左平移2个单位,得到的直线是_____.18.某校女子排球队的15名队员中有4个人是13岁,7个人是14岁,4个人是15岁,则该校女好排球队队员的平均年龄是____岁.三、解答题(共66分)19.(10分)如图,平面直角坐标系中,直线分别交x轴、y轴于A、B两点(AOAB)且AO、AB的长分别是一元二次方程x23x20的两个根,点C在x轴负半轴上,且AB:AC=1:2.(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.20.(6分)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了“汉子听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉子得1分,本次决赛,学生成绩为x(分),且50≤x<100(无满分),将其按分数段分为五组,绘制出以下不完整表格:请根据表格提供的信息,解答以下问题:(1)本次决赛共有________名学生参加;(2)直接写出表中:a=,b=。(3)请补全右面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为________.21.(6分)某班同学进行数学测验,将所得成绩(得分取整数)进行整理分成五组,并绘制成频数直方图(如图),请结合直方图提供的信息,回答下列问题:(1)该班共有多少名学生参加这次测验?(2)求1.5~2.5这一分数段的频数是多少,频率是多少?(3)若80分以上为优秀,则该班的优秀率是多少?22.(8分)关于的一元二次方程有两个不等实根,.(1)求实数的取值范围;(2)若方程两实根,满足,求的值。23.(8分)在坐标系下画出函数的图象,(1)正比例函数的图象与图象交于A,B两点,A在B的左侧,画出的图象并求A,B两点坐标(2)根据图象直接写出时自变量x的取值范围(3)与x轴交点为C,求的面积24.(8分)点D是等边三角形ABC外一点,且DB=DC,∠BDC=120°,将一个三角尺60°角的顶点放在点D上,三角尺的两边DP,DQ分别与射线AB,CA相交于E,F两点.(1)当EF∥BC时,如图①所示,求证:EF=BE+CF.(2)当三角尺绕点D旋转到如图②所示的位置时,线段EF,BE,CF之间的上述数量关系是否成立?如果成立,请说明理由;如果不成立,写出EF,BE,CF之间的数量关系,并说明理由.(3)当三角尺绕点D继续旋转到如图③所示的位置时,(1)中的结论是否发生变化?如果不变化,直接写出结论;如果变化,请直接写出EF,BE,CF之间的数量关系.25.(10分)如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:点D是线段BC的中点;(2)如图2,若AB=AC=13,AF=BD=5,求四边形AFBD的面积.26.(10分)如图,菱形对角线交于点,,,与交于点.(1)试判断四边形的形状,并说明你的理由;(2)若,求的长.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据一元二次方程的定义及常数项为0列出不等式和方程,求出m的值即可.【详解】解:根据题意,得:,解得:m=1.故选:B.【点睛】考查了一元二次方程的定义和一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2、B【解析】根据点在曲线上,点的坐标满足方程的关系,将P(1,-1)代入,得,解得k=-1.故选B.3、B【解析】

根据直角三角形斜边中线的性质求得CD,根据三角形面积求得CE,然后根据勾股定理即可求得DE.【详解】解:∵在△ABC中,∠ACB=90°,点D是边AB的中点,AB=20,

∴CD=AD=BD=10,

∵S△CAD=30,CE⊥AB,垂足为E,

∴S△CAD=AD•CE=30

∴CE=6,

∴DE=故选B.【点睛】本题考查了直角三角形斜边的中线等于斜边的一半,解题的关键是掌握这个性质的运用.4、C【解析】

直接利用二次根式的性质化简得出答案.【详解】.解:.故选:C.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.5、B【解析】

根据方差的定义,方差越小数据越稳定,即可得出答案.【详解】解:∵S甲2=3.8,S乙2=2.7,S丙2=6.2,S丁2=5.1,∴S乙2<S甲2<S丁2<S丙2,∴四个人中成绩最稳定的是乙,故选:B.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6、B【解析】

根据三角形中位线定理解答.【详解】∵点M,N分别是AC,BC的中点,∴AB=2MN=38(m),故选B.【点睛】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,且等于第三边的一半.7、B【解析】

根据线段垂直平分线的意义得FA=FB,由∠BAC=50°,得出∠ABC=∠ACB=65°,由角平分线的性质推知∠BAF=25°,∠FBE=40°,延长AF交BC于点E,AE⊥BC,根据等腰三角形的“三线合一”的性质得出:∠BFE=50°,∠CFE=50°,即可解出∠BCF的度数.【详解】延长∠BAC的角平分线AF交BC于点E,

∵AF与AB的垂直平分线DF交于点F,

∴FA=FB,

∵AB=AC,∠BAC=50°,

∴∠ABC=∠ACB=65°

∴∠BAF=25°,∠FBE=40°,

∴AE⊥BC,

∴∠CFE=∠BFE=50°,

∴∠BCF=∠FBE=40°.

故选:B.【点睛】本题主要考查了等腰三角形的性质和线段垂直平分线的性质,熟练掌握性质的内容是解答本题的关键.8、D【解析】

根据点P的路线,找到临界点为D点,则分段讨论P在边AD、边DC上运动时的y与x的函数关系式.【详解】当0≤x≤4时,点P在AD边上运动,则y=(x+4)4=2x+8.当4≤x≤8时,点P在DC边上运动,则y═(8-x+4)4=-2x+24,根据函数关系式,可知D正确故选:D.【点睛】本题为动点问题的函数图象探究题,考查了一次函数图象性质,应用了数形结合思想.9、B【解析】

先观察△ABC和△A′B′C′得到把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,然后把点P(x,y)向上平移2个单位,再关于y轴对称得到点的坐标为(-x,y+2),即为P′点的坐标.【详解】解:∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,

∴点P(x,y)的对应点P′的坐标为(-x,y+2).

故选:B.【点睛】本题考查了坐标与图形变化,解决本题的关键是根据已知对应点找到各对应点之间的变化规律.10、C【解析】

根据平行四边形性质得出AD=BC,AB=CD,OA=OC,根据线段垂直平分线性质得出AE=CE,求出CD+DE+EC=AD+CD,代入求出即可.【详解】∵平行四边形ABCD,∴AD=BC,AB=CD,OA=OC.∵EO⊥AC,∴AE=EC.∵AB+BC+CD+AD=16cm,∴AD+DC=8cm,∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=8(cm).故选C.【点睛】本题考查了平行四边形性质、线段垂直平分线性质的应用,关键是求出AE=CE,主要培养学生运用性质进行推理的能力.二、填空题(每小题3分,共24分)11、2或4.5【解析】

根据题意,要使△AEF与△ABC相似,由于本题没有说明对应关系,故采用分类讨论法.有两种可能:当△AEF∽△ABC时;当△AEF∽△ACB时.最后利用相似三角形的对应边成比例即可求得线段AF的长即可.【详解】当△AEF∽△ABC时,则,AF=2;当△AEF∽△ACB时,则,AF=4.5.故答案为:2或4.5.【点睛】本题考查了相似三角形的性质应用.利用相似三角形性质时,要注意相似比的对应关系.分类讨论时,要注意对应关系的变化,防止遗漏.12、1【解析】试题分析:平均数为:(3+7+4+6+5)÷5=5,S1=×[(3﹣5)1+(7﹣5)1+(4﹣5)1+(6﹣5)1+(5﹣5)1]=×(4+4+1+1+0)=1.故答案为1.点睛:本题考查方差的定义:一般地,设n个数据x1,x1,…xn的平均数为,则方差S1=[(x1-)1+(x1-)1+…+(xn-)1],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.13、2【解析】

证出OE是△ABC的中位线,由三角形中位线定理即可求得答案.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC;又∵点E是BC的中点,∴OE是△ABC的中位线,∴OE=AB=2,故答案为:2.【点睛】此题考查了平行四边形的性质以及三角形中位线的定理;熟练掌握平行四边形的性质和三角形中位线定理是解题的关键.14、对应角相等的三角形全等【解析】

根据逆命题的概念,交换原命题的题设与结论即可的出原命题的逆命题.【详解】命题“全等三角形对应角相等”的题设是“全等三角形”,结论是“对应角相等”,

故其逆命题是对应角相等的三角形是全等三角形.

故答案是:对应角相等的三角形是全等三角形.【点睛】考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.15、1【解析】试题分析:把x=1代入方程得:1-2m+m=0,解得m=1.考点:一元二次方程的根.16、【解析】【分析】方程两边平方可得到整式方程,再解之可得.【详解】方程两边平方可得x2-3x=4,即x2-3x-4=0,解得x1=-1,x2=4故答案为:【点睛】本题考核知识点:二次根式,无理方程.解题关键点:化无理方程为整式方程.17、y=﹣2x﹣2【解析】

根据“左加右减,上加下减”的平移规律即可求解.【详解】解:直线先向上平移3个单位,再向左平移2个单位得到直线,即.故答案为.【点睛】本题考查图形的平移变换和函数解析式之间的关系.掌握平移规律“左加右减,上加下减”是解题的关键.18、14【解析】

根据甲权平均数公式求解即可.【详解】(4×13+7×14+4×15)÷15=14岁.故答案为:14.【点睛】本题重点考查了加权平均数的计算公式,希望同学们要牢记公式,并能够灵活运用.数据x1、x2、……、xn的加权平均数:(其中w1、w2、……、wn分别为x1、x2、……、xn的权数).三、解答题(共66分)19、(1)A(1,0),C(-3,0);(2)(3)存在,点Q的坐标为(-1,0),(1,2),(1,-2),(1,).【解析】

(1)根据方程求出AO、AB的长,再由AB:AC=1:2求出OC的长,即可得到答案;(2)分点M在CB上时,点M在CB延长线上时,两种情况讨论S与t的函数关系式;(3)分AQ=AB,BQ=BA,BQ=AQ三种情况讨论可求点Q的坐标.【详解】(1)x23x20,(x-1)(x-2)=0,∴x1=1,x2=2,∴AO=1,AB=2,∴A(1,0),,∵AB:AC=1:2,∴AC=2AB=4,∴OC=AC-OA=4-1=3,∴C(-3,0).(2)∵,∴,∵,∴,∴△ABC是直角三角形,且∠ABC=90,由题意得:CM=t,BC=,当点M在CB上时,,②当点M在CB延长线上时,(t>).综上,.(3)存在,①当AB是菱形的边时,如图所示,在菱形AP1Q1B中,Q1O=AO=1,∴Q1(-1,0),在菱形ABP2Q2中,AQ2=AB=2,∴Q2(1,2),在菱形ABP3Q3中,AQ3=AB=2,∴Q3(1,-2);②当AB为菱形的对角线时,如图所示,设菱形的边长为x,则在Rt△AP4O中,,解得x=,∴Q4(1,).综上,平面内满足条件的点Q的坐标为(-1,0),(1,2),(1,-2),(1,).【点睛】此题考查一次函数的综合运用、解一元二次方程,解题过程中注意分类讨论.20、(1)50;(2)20,0.24;(3)详见解析;(4)52%.【解析】

(1)根据表格中的数据可以求得本次决赛的学生数;(2)根据(1)中决赛学生数,可以求得a、b的值;(3)根据(2)中a的值,可以将频数分布直方图补充完整;(4)根据表格中的数据可以求得本次大赛的优秀率.【详解】解:(1)由表格可得,本次决赛的学生数为:10÷0.2=50,故答案为:50;(2)a=50×0.4=20,b=12÷50=0.24,故答案为:20,0.24;(3)补全的频数分布直方图如右图所示,(4)由表格可得,决赛成绩不低于80分为优秀率为:(0.4+0.12)×100%=52%,故答案为:52%.【点睛】本题考查频数分布直方图、频数分布表,解题的关键是明确题意,找出所求问题需要的条件.21、(1)50;(2)频数:10频率:0.2;(3)优秀率:36%【解析】

(1)将统计图中的数据进行求和计算可得答案;(2)由图可得频数,根据频率等于频数除以总数进行计算可得答案;(3)根据直方图可得80分以上的优秀人数,再进一步计算百分比.【详解】解:(1)根据题意,该班参加测验的学生人数为4+10+18+12+6=50(人),答:该班共有50名学生参加这次测验;(2)由图可得:1.5~2.5这一分数段的频数为10,频率为10÷50=0.2;(3)由图可得:该班的优秀人数为12+6=18人,则该班的优秀率为:18÷50×100%=36%,答:该班的优秀率是36%.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22、(1);(2).【解析】

(1)根据∆>0列式求解即可;(2)先求出x1+x2与x1·x2的值,然后代入求解即可.【详解】(1)原方程有两个不相等的实数根,,解得:.(2)由根与系数的关系得,.,,解得:或,又,.【点睛】本题考查了一元二次方程根的判别式,以及一元二次方程根与系数的关系,熟练掌握各知识点是解答本题的关键.23、(1)图象详见解析,A(,),B(8,4);(2)x≤或x>8;(3).【解析】

(1)用描点法画出和的图象,再解方程组求得点A、B的坐标即可;(2)观察图象,结合点A、B的坐标即可求解;(3)先求得点C的坐标,再利用S△ABC=S△OBC﹣S△OAC即可求得△ABC的面积.【详解】(1)画出函数y1=|x﹣4|的图象如图:∵y=|x﹣4|∴,解得,∴A(,),解得,∴B(8,4);(2)y2≤y1时自变量x的取值范围是:x≤或x≥8;(3)令y=0则0=|x﹣4|,解得x=4,∴C(0,4),∴S△ABC=S△OBC﹣S△OAC=×4×4﹣=.【点睛】本题考查了函数图象的画法及函数的交点坐标问题,正确求得两个函数的交点坐标是解决问题的关键.24、(1)见解析;(2)结论仍然成立.理由见解析;(3)结论发生变化.EF=CF-BE.【解析】

(1)根据△ABC是等边三角形知道AB=AC,∠ABC=∠ACB=60°,而DB=DC,∠BDC=120°,这样可以得到△DCF和△BED是直角三角形,由于EF∥BC,可以证明△AEF是等边三角形,也可以证明△BDE≌△CDF,可以得到DE=DF,由此进一步得到

DE=DF∠BDE=∠CDF=30°,这样可以得到BE=DE=DF=CF,而△DEF是等边三角形,所以题目的结论就可以证明出来了;(2)结论仍然成立.如图,在AB的延长线上取点F’,使BF’=CF,连接DF’,根据(1)的结论可以证明△DCF≌△DBF’,根据全等三角形的性质可以得到DF=DF’,∠BDF’=∠CDF,又∠BDC=120°,∠EDF=60°,可以得到:∠EDF’=∠CDF=60°,由此可以证明△EDF’≌△EDF,从而证明题目的结论;(3)结论发生变化.EF=BE-CF.如图,在射线AB上取点F′,使BF′=CF,连接DF′.由(1)得△DCF≌△DBF′(SAS).根据全等三角形的性质可以得到DF=DF′,∠BDF′=∠CDF.又因为∠BDC=120°,∠EDF=60°,可以得到∠FDB+∠CDF=60°,∠FDB+∠BDF′=∠FDF′=120°,所以∠EDF′=∠EDF=60°,由此可得△EDF′≌△EDF(SAS),从而证明题目的结论EF=EF′=BF′-BE=CF-BE。【详解】(1)证明:∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=60°.∵DB=DC,∠BDC=120°,∴∠DBC=∠DCB=30°.∴∠DBE=∠DBC+∠ABC=90°,∠DCF=∠DCB+∠ACB=90°.∵EF∥BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°.∴AE=AF.∴BE=AB-AE=AC-AF=CF.又∵DB=DC,∠DBE=∠DCF=90°,∴△BDE≌△CDF.∴DE=DF,∠BDE=∠CDF=(120°-60°)=30°.∴BE=DE=DF=CF.∵∠EDF=60°,∴△DEF是等边三角形,即DE=DF=EF.∴BE+CF=DE+DF=EF,即EF=BE+CF.(2)解:结论仍然成立.理由如下:如图,在射线AB上取点F′,使BF′=CF,连接DF′.由(1)得∠DBE=∠DCF=90°,则∠DBF′=∠DCF=90°.又∵BD=CD,∴△DCF≌△DBF′(SAS).∴DF=DF′,∠BDF′=∠CDF.又∵∠BDC=120°,∠EDF=60°,∴∠EDB+∠CDF=60°.∴∠EDB+∠BDF′=∠EDF′=60°.∴∠EDF′=∠EDF.又∵DE=DE,∴△EDF′≌△EDF(SAS).∴EF=EF′=BE+BF′=BE+CF.(3)解:结论发生变化.EF=CF-BE.理由:在射线AB上取点F′,使BF′=CF

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论