2022-2023学年安徽庐江县数学八下期末达标测试试题含解析_第1页
2022-2023学年安徽庐江县数学八下期末达标测试试题含解析_第2页
2022-2023学年安徽庐江县数学八下期末达标测试试题含解析_第3页
2022-2023学年安徽庐江县数学八下期末达标测试试题含解析_第4页
2022-2023学年安徽庐江县数学八下期末达标测试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列各组数据中,能够成为直角三角形三条边长的一组数据是().A. B. C. D.0.3,0.4,0.52.爷爷在离家900米的公园锻炼后回家,离开公园20分钟后,爷爷停下来与朋友聊天10分钟,接着又走了15分钟回到家中.下面图形中表示爷爷离家的距离y(米)与爷爷离开公园的时间x(分)之间的函数关系是()A. B.C. D.3.如图,矩形ABCD的两条对角线交于点O,若,,则AC等于()A.8 B.10 C.12 D.184.在△ABC中,若AB=8,BC=15,AC=17,则AC边上的中线BD的长为()A.8 B.8.5 C.9 D.9.55.如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④OE=BC,成立的个数有()A.1个B.2个C.3个D.4个6.无理数2﹣3在()A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间7.顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是()A.矩形 B.直角梯形 C.菱形 D.正方形8.若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠29.下列等式中,计算正确的是()A. B.C. D.10.如图,已知△ABC是边长为3的等边三角形,点D是边BC上的一点,且BD=1,以AD为边作等边△ADE,过点E作EF∥BC,交AC于点F,连接BF,则下列结论中①△ABD≌△BCF;②四边形BDEF是平行四边形;③S四边形BDEF=;④S△AEF=.其中正确的有()A.1个 B.2个 C.3个 D.4个11.在△ABC和△DEF中,AB=2DE,AC=2DF,∠A=∠D,如果△ABC的周长是16,面积是12,那么△DEF的周长、面积依次为()A.8,3 B.8,6 C.4,3 D.4,612.若实数使关于的不等式组有且只有四个整数解,且实数满足关于的方程的解为非负数,则符合条件的所有整数的和为()A.1 B.2 C.-2 D.-3二、填空题(每题4分,共24分)13.若方程组的解是,则直线y=﹣2x+b与直线y=x﹣a的交点坐标是_____.14.如图,在RtΔABC中,∠ACB=90°,D是AB的中点,若∠A=2615.统计学校排球队队员的年龄,发现有岁、岁、岁、岁等四种年龄,统计结果如下表,则根据表中信息可以判断表中信息可以判断该排球队队员的平均年龄是__________岁.年龄/岁人数/个16.关于x的一元二次方程x2+3x+m﹣2=0有一个根为1,则m的值等于______.17.若双曲线在第二、四象限,则直线y=kx+2不经过第_____象限。18.当__________时,代数式取得最小值.三、解答题(共78分)19.(8分)(1)已知x=+1,y=-1,求x2+y2的值.(2)解一元二次方程:3x2+2x﹣2=1.20.(8分)计算:(1)(2)(3)先化简:再求值.,其中21.(8分)某公司购进某种矿石原料300吨,用于生产甲、乙两种产品,生产1吨甲产品或1吨乙产品所需该矿石和煤原料的吨数如下表:产品资源甲乙矿石(吨)104煤(吨)48生产1吨甲产品所需成本费用为4000元,每吨售价4600元;生产1吨乙产品所需成本费用为4500元,每吨售价5500元,现将该矿石原料全部用完,设生产甲产品x吨,乙产品m吨,公司获得的总利润为y元.(1)写出m与x之间的关系式(2)写出y与x之间的函数表达式,并写出自变量的范围(3)若用煤不超过200吨,生产甲产品多少吨时,公司获得的总利润最大,最大利润是多少?22.(10分)如图,边长为7的正方形OABC放置在平面直角坐标系中,动点P从点C出发,以每秒1个单位的速度向O运动,点Q从点O同时出发,以每秒1个单位的速度向点A运动,到达端点即停止运动,运动时间为t秒,连PQ、BP、BQ.(1)写出B点的坐标;(2)填写下表:时间t(单位:秒)123456OP的长度OQ的长度PQ的长度四边形OPBQ的面积①根据你所填数据,请描述线段PQ的长度的变化规律?并猜测PQ长度的最小值.②根据你所填数据,请问四边形OPBQ的面积是否会发生变化?并证明你的论断;(3)设点M、N分别是BP、BQ的中点,写出点M,N的坐标,是否存在经过M,N两点的反比例函数?如果存在,求出t的值;如果不存在,说明理由.23.(10分)佳佳商场卖某种衣服每件的成本为元,据销售人员调查发现,每月该衣服的销售量(单位:件)与销售单价(单位:元/件)之间存在如图中线段所示的规律:(1)求与之间的函数关系式,并写出的取值范围;(2)若某月该商场销售这种衣服获得利润为元,求该月这种衣服的销售单价为每件多少元?24.(10分)如图①,在正方形中,点,分别在、上,且.(1)试探索线段、的关系,写出你的结论并说明理由;(2)连接、,分别取、、、的中点、、、,四边形是什么特殊平行四边形?请在图②中补全图形,并说明理由.25.(12分)解下列方程(1)(x﹣3)2=3﹣x;(2)2x2+1=4x.26.某手机店销售部型和部型手机的利润为元,销售部型和部型手机的利润为元.(1)求每部型手机和型手机的销售利润;(2)该手机店计划一次购进,两种型号的手机共部,其中型手机的进货量不超过型手机的倍,设购进型手机部,这部手机的销售总利润为元.①求关于的函数关系式;②该手机店购进型、型手机各多少部,才能使销售总利润最大?(3)在(2)的条件下,该手机店实际进货时,厂家对型手机出厂价下调元,且限定手机店最多购进型手机部,若手机店保持同种手机的售价不变,设计出使这部手机销售总利润最大的进货方案.

参考答案一、选择题(每题4分,共48分)1、D【解析】

先根据三角形的三边关系定理看看能否组成三角形,再根据勾股定理的逆定理逐个判断即可.【详解】A、()2+()2≠()2,即三角形不是直角三角形,故本选项不符合题意;

B、(32)2+(42)2≠(52)2,即三角形不是直角三角形,故本选项不符合题意;

C、()2+()2≠()2,即三角形不是直角三角形,故本选项不符合题意;

D、0.32+0.42=0.52,即三角形是直角三角形,故本选项符合题意;

故选:D.【点睛】考查了三角形的三边关系定理和勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键.2、B【解析】

由题意,爷爷在公园回家,则当时,;从公园回家一共用了45分钟,则当时,;【详解】解:由题意,爷爷在公园回家,则当时,;从公园回家一共用了分钟,则当时,;结合选项可知答案B.故选:B.【点睛】本题考查函数图象;能够从题中获取信息,分析运动时间与距离之间的关系是解题的关键.3、C【解析】

先根据矩形的性质得出,再利用直角三角形的性质即可得.【详解】四边形ABCD是矩形在中,,则故选:C.【点睛】本题考查了矩形的性质、直角三角形的性质,掌握矩形的性质是解题关键.4、B【解析】

首先判定△ABC是直角三角形,再根据在直角三角形中,斜边上的中线等于斜边的一半可得答案.【详解】∵82+152=289=172,∴AB2+BC2=AC2,∴△ABC是直角三角形,∠ABC=90°,∵BD是AC边上的中线,∴BD=AC=8.5,故选B.【点睛】此题主要考查了勾股定理逆定理,以及直角三角形的性质,关键是正确判定△ABC的形状.5、C【解析】试题分析:由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据AE平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等边三角形,由于AB=BC,得到AE=BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正确;由于AC⊥AB,得到S▱ABCD=AB•AC,故②正确,根据AB=BC,OB=BD,且BD>BC,得到AB<OB,故③错误;根据三角形的中位线定理得到OE=AB,于是得到OE=BC,故④正确.解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∵AB=BC,∴AE=BC,∴∠BAC=90°,∴∠CAD=30°,故①正确;∵AC⊥AB,∴S▱ABCD=AB•AC,故②正确,∵AB=BC,OB=BD,且BD>BC,∴AB<OB,故③错误;∵CE=BE,CO=OA,∴OE=AB,∴OE=BC,故④正确.故选:C.6、B【解析】

首先得出2的取值范围进而得出答案.【详解】∵2=,∴6<<7,∴无理数2-3在3和4之间.故选B.【点睛】此题主要考查了估算无理数的大小,正确得出无理数的取值范围是解题关键.7、A【解析】

解:如图,AC⊥BD,E、F、G、H分别为各边的中点,连接点E、F、G、H.

∵E、F、G、H分别为各边的中点,

∴EF∥AC,GH∥AC,EH∥BD,FG∥BD(三角形的中位线平行于第三边),

∴四边形EFGH是平行四边形(两组对边分别平行的四边形是平行四边形),

∵AC⊥BD,EF∥AC,EH∥BD,

∴∠EMO=∠ENO=90°,

∴四边形EMON是矩形(有三个角是直角的四边形是矩形),

∴∠MEN=90°,

∴四边形EFGH是矩形(有一个角是直角的平行四边形是矩形).

故选:A.8、D【解析】试题解析:由题意得,且解得且故选D.9、A【解析】

根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【详解】A、a10÷a9=a,正确;B、x3•x2=x5,故错误;C、x3-x2不是同类项不能合并,故错误;D、(-3xy)2=9x2y2,故错误;故选A.【点睛】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.10、C【解析】

连接EC,作CH⊥EF于H.首先证明△BAD≌△CAE,再证明△EFC是等边三角形即可解决问题;【详解】连接EC,作CH⊥EF于H.∵△ABC,△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠ABC=∠ACB=60°,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=EC=1,∠ACE=∠ABD=60°,∵EF∥BC,∴∠EFC=∠ACB=60°,∴△EFC是等边三角形,CH=,∴EF=EC=BD,∵EF∥BD,∴四边形BDEF是平行四边形,故②正确,∵BD=CF=1,BA=BC,∠ABD=∠BCF,∴△ABD≌△BCF,故①正确,∵S平行四边形BDEF=BD•CH=,故③正确,∵△ABC是边长为3的等边三角形,S△ABC=∴S△ABD∴S△AEF=S△AEC=•S△ABD=故④错误,故选C.【点睛】本题考查平行四边形的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是准确寻找全等三角形解决问题,属于中考选择题中的压轴题.11、A【解析】

试题分析:根据已知可证△ABC∽△DEF,且△ABC和△DEF的相似比为2,再根据相似三角形周长的比等于相似比,面积的比等于相似比的平方即可求△DEF的周长、面积.解:因为在△ABC和△DEF中,AB=2DE,AC=2DF,∴,又∵∠A=∠D,∴△ABC∽△DEF,且△ABC和△DEF的相似比为2,∵△ABC的周长是16,面积是12,∴△DEF的周长为16÷2=8,面积为12÷4=3,故选A.【点睛】考点:等腰三角形的判定;相似三角形的判定与性质.12、A【解析】

先解不等式组,然后根据不等式组解集的情况即可列出关于m的不等式,从而求出不等式组中m的取值范围;然后解分式方程,根据分式方程解的情况列出关于m的不等式,从而求出分式方程中m的取值范围,然后取公共解集,即可求出结论.【详解】解:不等式组的解集为∵关于的不等式组有且只有四个整数解∴解得:分式方程的解为:∵关于的方程的解为非负数,∴解得:m≤2且m≠1综上所述:且m≠1∴符合条件的所有整数的和为(-1)+0+2=1故选A.【点睛】此题考查的是含参数的不等式组和含参数的分式方程,掌握根据不等式组解集的情况求参数的取值范围和分式方程解的情况求参数的取值范围是解决此题的关键.二、填空题(每题4分,共24分)13、(-1,3)【解析】

直线y=-2x+b可以变成:2x+y=b,直线y=x-a可以变成:x-y=a,∴两直线的交点即为方程组的解,故交点坐标为(-1,3).故答案为(-1,3).14、52【解析】

根据直角三角形的性质得AD=CD,由等腰三角形性质结合三角形外角性质可得答案.【详解】∵∠ACB=90°,D是AB上的中点,∴CD=AD=BD,∴∠DCA=∠A=26°,∴∠BDC=2∠A=52°.故答案为52.【点睛】此题考查了直角三角的性质及三角形的外角性质,掌握直角三角形斜边中线等于斜边一半的性质是解题的关键.15、【解析】

计算出学校排球队队员的总年龄再除以总人数即可.【详解】解:(岁)所以该排球队队员的平均年龄是14岁.故答案为:14【点睛】本题考查了平均数,掌握求平均数的方法是解题的关键.16、-1【解析】

方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于m的方程,从而求得m的值.【详解】解:将x=1代入方程得:1+3+m﹣1=0,解得:m=﹣1,故答案为﹣1.【点睛】本题主要考查了方程的解的定义.就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.17、三【解析】分析:首先根据反比例函数的图像得出k的取值范围,然后得出直线所经过的象限.详解:∵反比例函数在二、四象限,∴k<0,∴y=kx+2经过一、二、四象限,即不经过第三象限.点睛:本题主要考查的是一次函数和反比例函数的图像,属于基础题型.对于反比例函数,当k>0时,函数经过一、三象限,当k<0时,函数经过二、四象限;对于一次函数y=kx+b,当k>0,b>0时,函数经过一、二、三象限;当k>0,b<0时,函数经过一、三、四象限;当k<0,b>0时,函数经过一、二、四象限;当k<0,b<0时,函数经过二、三、四象限.18、【解析】

运用配方法变形x2-2x+3=(x-1)2+2;得出(x-1)2+2最小时,即(x-1)2=0,然后得出答案.【详解】∵x2-2x+3=x2-2x+1+2=(x-1)2+2,∴当x-1=0时,(x-1)2+2最小,∴x=1时,代数式x2-2x+3有最小值.故答案为:1.【点睛】此题主要考查了配方法的应用,非负数的性质,得出(x-1)2+2最小时,即(x-1)2=0,这是解决问题的关键.三、解答题(共78分)19、(1)6;(2)x1=,x2=.【解析】

(1)代入后利用完全平方公式计算;(2)用公式法求解.【详解】(1)x2+y2=(+1)2+(−1)2=3+2+3-2=6;(2)a=3,b=2,c=-2,b2-4ac=22-4×3×(-2)=28,x==,即x1=,x2=.【点睛】本题考查了二次根式与一元二次方程,熟练化简二次根式和解一元二次方程是解题的关键.20、(1);(2)9;(3).【解析】

(1)根据二次根式的加减法和除法可以解答本题;(2)根据完全平方公式和多项式乘多项式可以解答本题;(3)根据分式的减法和除法可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.【详解】解:(1)==3-+2=4;(2)(−1)2+(+2)2-2(−1)(+2)=3-2+1+3+4+4-2(3+-2)=3-2+1+3+4+4-2-2=9;(3)====,当时,原式=.【点睛】本题考查分式的化简求值、二次根式的混合运算,解答本题的关键是明确它们各自的计算方法.21、(1)m=75-2.5x;(2)y=-1900x+75000(0≤x≤30);(3)生产甲产品25吨时,公司获得的总利润最大,最大利润是27500元.【解析】

(1)∵生产甲产品x吨,则用矿石原料10x吨.∴生产乙产品用矿石原料为(300-10x)吨,由此得出;(2)先求出生产1吨甲、乙两种产品各获利多少,然后可求出获得的总利润.

(3)由于总利润y是x的一次函数,先求出x的取值范围,再根据一次函数的增减性,求得最大利润.【详解】(1)m与x之间的关系式为(2)生产1吨甲产品获利:4600-4000=600生产1吨乙产品获利:5500-4500=1000y与x的函数表达式为:(0≤x≤30)(3)根据题意列出不等式解得x≥25又∵0≤x≤30∴25≤x≤30∵y与x的函数表达式为:y=-1900x+75000y随x的增大而减小,∴当生产甲产品25吨时,公司获得的总利润最大y最大=-1900×25+75000=27500(元).【点睛】本题考查的知识点是用函数的知识解决实际问题,解题关键是注意自变量的取值范围还必须使实际问题有意义.22、(1)B(7,7);(2)表格填写见解析;①,PQ长度的最小值是;②四边形OPBQ的面积不会发生变化;(3)t=3.5存在经过M,N两点的反比例函数.【解析】

通过写点的坐标,填表,搞清楚本题的基本数量关系,每个量的变化规律,然后进行猜想;用运动时间t,表示线段OP,OQ,CP,AQ的长度,运用割补法求四边形OPBQ的面积,由中位线定理得点M(3.5,7-),N(,3.5),反比例函数图象上点的坐标特点是,利用该等式求t值.【详解】解:(1)∵在正方形OABC中OA=OC=7∴B(7,7)(2)表格填写如下:①线段PQ的长度的变化规律是先减小再增大,PQ长度的最小值是.理由如下:在Rt△POQ中,OP=7-t,OQ=t∴PQ2=(7-t)2+t2=2t2-14t+49=∵∴∴当时PQ2最取得最小值为∴此时②根据所填数据,四边形OPBQ的面积不会发生变化;∵=24.5,∴四边形OPBQ的面积不会发生变化.(3)点M(3.5,7−),N(,3.5),当3.5(7−)=×3.5时,则t=3.5,∴当t=3.5存在经过M,N两点的反比例函数.【点睛】本题考查了正方形的性质,坐标与图形性质,反比例函数图象上点的坐标特征,掌握正方形的性质,坐标与图形性质,反比例函数图象上点的坐标特征是解题的关键.23、(1);(2)该月这种衣服的销售单价为每件元【解析】

(1)根据点的坐标,利用待定系数法可求出每月销售量y与销售单价x之间的函数关系式;(2)根据总利润=每千克的利润×月销售数量,即可得出关于x的一元二次方程,解之即可得出结论.【详解】解:(1)依题意可设,由图像得:点都在的图像上,,与之间的函数关系式:,由图象得,的取值范围:;(2)依题意得:,,解得:(舍去);∴该月这种衣服的销售单价为每件元.【点睛】本题考查了一次函数的应用以及一元二次方程的应用,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.24、(1)AF=DE,AF⊥DE,理由见详解;(2)四边形HIJK是正方形,补图、理由见详解.【解析】

(1)根据已知利用SAS判定△DAE≌△ABF,由全等三角形的判定方法可得到AF=DE,∠BAF=∠ADE,再由直角三角形的两个锐角互余和有两个角互余的三角形是直角三角形可证得AF⊥DE.(2)根据已知可得HK,KJ,IJ,HI都是中位线,由全等三角形的判定可得到四边形四边都相等且有一个角是直角,从而来可得到该四边形是正方形.【详解】解:(1)AF=DE,AF⊥DE.∵ABCD是正方形,∴AB=AD,∠DAB=∠ABC=90°,∵AE=BF,∴△DAE≌△ABF,∴AF=DE,∠BAF=∠ADE.∵∠DAB=90°,∴∠BAF+∠DAF=90°,∴∠ADE+∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论