河北省青龙满族自治县逸夫中学高中数学第3章函数的应用(12用二分法求方程的近似解)示范1_第1页
河北省青龙满族自治县逸夫中学高中数学第3章函数的应用(12用二分法求方程的近似解)示范1_第2页
河北省青龙满族自治县逸夫中学高中数学第3章函数的应用(12用二分法求方程的近似解)示范1_第3页
河北省青龙满族自治县逸夫中学高中数学第3章函数的应用(12用二分法求方程的近似解)示范1_第4页
河北省青龙满族自治县逸夫中学高中数学第3章函数的应用(12用二分法求方程的近似解)示范1_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省青龙满族自治县逸夫中学高中数学必修1第3章函数的应用-2.示范教课设计(1.2用二分法求方程的近似解)教课剖析求方程的解是常有的数学识题,这以前我们学过解一元一次、一元二次方程,但有些方程求精准解较难.本节从另一个角度来求方程的近似解,这是一种崭新的思想方式,在现实生活中也有着宽泛的应用.用二分法求方程近似解的特色是:运算量大,且重复相同的步骤,所以适适用计算器或计算机进行运算.在教课过程中要让学生领会到人类在方程求解中的不停进步.三维目标1.让学生学会用二分法求方程的近似解,知道二分法是科学的数学方法.认识用二分法求方程的近似解特色,学会用计算器或计算机求方程的近似解,初步认识算法思想.回想解方程的历史,认识人类解方程的进步历程,激发学习的热忱和学习的兴趣.要点难点用二分法求方程的近似解.课时安排课时教课过程导入新课思路1.(情形导入)师:(手拿一款手机)假如让你来猜这件商品的价钱,你如何猜?生1:先初步估量一个价钱,假如高了再每隔10元降低报价.生2:这样太慢了,先初步估量一个价钱,假如高了每隔100元降低报价.假如低了,每50元上涨;假如再高了,每隔20元降低报价;假如低了,每隔10元上涨报价生3:先初步估量一个价钱,假如高了,再报一个价钱;假如低了,就报两个价钱和的一半;假如高了,再把报的廉价与一半价相加再求其半,报出价钱;假如低了,就把刚才报出的价钱与前面的价钱联合起来取其和的半价师:在现实生活中我们也经常利用这类方法.比如,一天,我们华庄校区与锡南校区的线路出了故障,(相距大概3500米)电工是怎样检测的呢?是依据生1那样每隔10米或许依据生2那样每隔100米来检测,仍是依据生3那样来检测呢?生:(齐答)依据生3那样来检测.师:生3的回答,我们能够用一个动向过程来展现一下(展现多媒体课件,区间迫近法).思路2.(案例导入)有12个小球,质量均匀,只有一个球是比其余球重,你用天平称几次能够找出这个球,要求次数越少越好.(让同学们自由讲话,找出最好的方法)解:第一次,两头各放六个球,低的那一端必定有重球.第二次,两头各放三个球,低的那一端必定有重球.第三次,两头各放一个球,假如均衡,剩下的就是重球,不然,低的就是重球.其实这就是一种二分法的思想,那什么叫二分法呢?推动新课新知研究提出问题①解方程2x-16=0.②解方程x2-x-2=0.③解方程x3-2x2-x+2=0.④解方程(x2-2)(x2-3x+2)=0.⑤我们知道,函数f(x)=lnx+2x-6在区间(2,3)内有零点.进一步的问题是,如何找出这个零点的近似值?⑥“取中点”后,如何判断所在零点的区间?⑦什么叫二分法?⑧试求函数f(x)=lnx+2x-6在区间(2,3)内零点的近似值.⑨总结用二分法求函数零点近似值的步骤.⑩思虑用二分法求函数零点近似值的特色.议论结果:①x=8.②x=-1,x=2.③x=-1,x=1,x=2.④x=-2,x=2,x=1,x=2.⑤假如能够将零点所在的范围尽量减小,那么在必定精准度的要求下,我们能够获得零点的近似值.为了方便,我们经过“取中点”的方法逐渐减小零点所在的范围.〔“取中点”,一般地,我们把x=ab称为区间(a,b)的中点〕2⑥比方取区间(2,3)的中点2.5,用计算器算得f(2.5)<0,因为f(2.5)·f(3)<0,所以零点在区间(2.5,3)内.⑦关于在区间[a,b]上连续不停且f(a)·f(b)<0的函数y=f(x),经过不停地把函数的零点所在的区间一分为二,使区间的两个端点逐渐迫近零点,从而获得零点近似值的方法叫二分法(bisection).⑧因为函数f(x)=lnx+2x-6,用计算器或计算机作出函数f(x)=lnx+2x-6的对应值表.x123456789f(x)-4-1.3061.09863.38635.60947.791812.07914.1979.945924由表可知,f(2)<0,f(3)>0,则f(2)·f(3)<0,这说明f(x)在区间内有零点x0,取区间(2,3)的中点x1=2.5,用计算器算得f(2.5)≈-0.084,因为f(2.5)·f(3)<0,所以x∈(2.5,3).0同理,可得表(下表)与图象(如图3-1-2-1).区间中点的值中点函数的近似值(2,3)2.5-0.084(2.5,3)2.750.512(2.5,2.75)2.6250.215(2.5,2.625)2.56250.066(2.5,2.5625)2.53-1-2-5-0.009(2.53-1-2-5,2.5625)2.5468750.029(2.53-1-2-5,2.546875)2.53906250.010(2.53-1-2-5,2.5390625)2.535156250.001图3-1-2-1因为(2,3)

(2.5,3)

(2.5,2.75),

所以零点所在的范围的确越来越小了

.

假如重复上述步骤,那么零点所在的范围会愈来愈小

(见上表).这样,在必定的精准度下,我们能够在有限次重复相同步骤后,将所得的零点所在区间内的随意一点作为函数零点的近似值.特别地,能够将区间端点作为函数零点的近似值.比如,当精准度为0.01时,因为

|2.5390625-2.53-1-2-5|=0.0078125<0.01

,所以,我们能够将

x=2.53-1-2-5

作为函数

f(x)=lnx+2x-6

零点的近似值

.⑨给定精度ε,用二分法求函数f(x)的零点近似值的步骤以下:1°确立区间[a,b],考证f(a)·f(b)<0,给定精度ε.2°求区间(a,b)的中点c.3°计算f(c):a.若f(c)=0,则c就是函数的零点;b.若f(a)·f(c)<0c.若f(c)·f(b)<0

,则令b=c〔此时零点,则令a=c〔此时零点

x0∈(a,c)x0∈(c,b)

〕;〕.4°判断能否达到精度ε;即若|a-b|<ε,则获得零点值a(或b);不然重复步骤2°~4°.⑩由函数的零点与相应方程的关系,我们可用二分法来求方程的近似解.因为计算量较大,并且是重复相同的步骤,所以,我们能够经过设计必定的计算程序,借助计算器或计算机达成计算.应用示例思路1例1借助计算器或计算机用二分法求方程2x+3x=7的近似解(精准度为0.1).活动:①师生共同商讨沟通,引出借助函数f(x)=2x+3x-7的图象,能够减小根所在区间,并依据f(1)<0,f(2)>0,可得出根所在区间(1,2);②引起学生思虑,如何进一步有效减小根所在的区间;③共同商讨各样方法,指引学生探访出经过不停对分区间,有助于问题的解决;④用图例演示根所在区间不停被减小的过程,加深学生对上述方法的理解;⑤引起学生思虑在有效减小根所在区间时,到什么时候才能达到所要求的精准度.学生简述上述求方程近似解的过程.解:原方程即2x+3x-7=0,令f(x)=2x+3x-7,用计算器或计算机做出函数f(x)=2x+3x-7的对应值表与图象(3-1-2-2).x012345678f(x)-6-2310214075142273图3-1-2-2察看图表可知f(1)·f(2)<0,说明这个函数在区间(1,2)内有零点x0.取区间(1,2)的中点x=1.5,用计算器算得f(1.5)≈0.33.因为f(1)·f(1.5)<0,所以x0∈(1,1.5).1.4375.再取区间(1,1.5)的中点x=1.25,用计算器算得f(1.25)≈-0.87.因为f(1.25)·f(1.5)<0,所以x0∈(1.25,1.5).同理,可得,x∈(1.375,1.5),x∈(1.375,1.4375).00因为|1.375-1.4375|=0.0625<0.1,所以,原方程的近似解可取为例2利用计算器,求方程x2-2x-1=0的一个近似解(精准度0.1).活动:教师帮助学生剖析:画出函数

f(x)=x

2-2x-1

的图象,如图

3-1-2-3

所示.

从图象上能够发现,方程

x2-2x-1=0

的一个根

x1在区间

(2,3)内,另一个根

x2在区间(-1,0)内.依据图象,我们发现区间(2,3)上穿过

x

f(2)=-1<0,f(3)=2>0,这表示此函数图象在轴一次,即方程f(x)=0在区间(2,3)上有唯一解.图3-1-2-3计算得f(23)=1>0,发现x1∈(2,2.5)(如图3-1-2-3),这样可4以进一步减小

x1所在的区间

.解:设

f(x)=x

2-2x-1

,先画出函数图象的简图,如图

3-1-2-3.因为

f(2)=-1<0

,f(3)=2>0

,所以在区间(2,3)内,方程x2-2x-1=0有一解,记为x1.取2与

3的均匀数

2.5,因为

f(2.5)=0.25>0

,所以

2<x1<2.5.再取2与2.5的均匀数2.25,因为f(2.25)=-0.4375<0,所以2.25<x1<2.5.这样持续下去,得f(2)<0,f(3)>0x1∈(2,3),f(2)<0,f(2.5)>0x1∈(2,2.5),f(2.25)<0,f(2.5)>0x1∈(2.25,2.5),f(2.375)<0,f(2.5)>0x1∈(2.375,2.5),f(2.375)<0,f(2.4375)>0x∈(2.375,2.4375).1因为2.375与2.4375精准到0.1的近似值都为2.4,所以此方程的近似解为x1≈2.4.评论:利用相同的方法,还能够求出方程的另一个近似解.思路2例1利用计算器,求方程lgx=3-x活动:学生先思虑或议论后再回答,生.

的近似解(精准度0.1).教师点拨、提示并实时评论学分别画出y=lgx和y=3-x的图象,如图3124所示.在两个函数图象的交点处,函数值相等.所以,这个点的横坐标就是方程lgx=3-x的解.由函数y=lgx与y=3-x的图象能够发现,方程lgx=3-x有独一解,记为x1,并且这个解在区间(2,3)内.图3-1-2-4解:设f(x)=lgx+x-3,设x1为函数的零点即方程lgx=3-x的解.用计算器计算,得f(2)<0,f(3)>0x1∈(2,3),f(2.5)<0,f(3)>0x1∈(2.5,3),f(2.5)<0,f(2.75)>0x∈(2.5,2.75),1f(2.5)<0,f(2.625)>0x1∈(2.5,2.625),f(2.5625)<0,f(2.625)>0x∈(2.5625,2.625).1因为2.5625与2.625精准到0.1的近似值都为2.6,所以原方程的近似解为x1≈2.6.例2求方程lnx-2x+3=0在区间[1,2]内的根(精准度0.1).解:设f(x)=lnx-2x+3,则原方程的根为函数f(x)的零点.设x1为函数的零点即方程lnx-2x+3=0的解.如图3-1-2-5,因为f(1)=1,f(2)=-0.306852819,所以f(1)f(2)<0,即函数f(x)在[1,2]内有一个零点.依据二分法,用计算器得出以下表格:xy112-0.3068528193-1.9013877114-3.6137056395-5.3905620886-7.2082405317-9.0540898518-10.92055846(步长为1)xy111.550.4054651082-0.3068528192.5-1.0837092683-1.9013877113.5-2.74723703243.6137056394.5-4.495922603(步长为0.5)xy111.250.7231435511.50.4054651081.750.0596157872-0.3068528192.25-0.6890697832.5-1.0837092682.75-1.488399088(步长为0.25)xy111.1250.8677830351.250.7231435511.3750.5684537311.50.4054651081.6250.2355078151.750.0596157871.875-0.12139134(步长为0.125)xy1.50.4054651081.56250.3-2-1-2871021.6250.2355078151.68750.1482481431.750.0596157871.8125-0.0302928921.875-0.121391341.9375-0.213601517(步长为0.0625)由上述表格能够获得下表与图象3-1-2-5:区间中点的值中点函数近似值(1,2)1.50.405465108(1.5,2)1.750.059615787(1.75,2)1.875-0.12139134(1.75,1.875)1.8125-0.030292892图3-1-2-5因为f(1.75)=0.059615787>0,f(1.8125)=-0.030292892<0,所以x1∈(1.75,1.8125).因为|1.8125-1.75|=0.0625<0.1,所以区间(1.75,1.8125)内的每一个实数都能够作为方程lnx-2x+3=0在区间[1,2]内的根.评论:①先设出方程对应的函数,画出函数的图象,初步确立解所在的区间,再用二分法求方程近似解.②二分法,即渐渐迫近的方法.③计算量较大,并且是重复相同的步骤,借助计算器或计算机达成计算比较简单.知能训练依据下表中的数据,能够判定方程ex-x-2=0的一个根所在的区间为()x-10123ex0.3712.277.3920.0x+212345A.(-1,0)B.(0,1)C.(1,2)D.(2,3)用二分法判断方程2x=x2的根的个数为()A.1

B.2

C.3

D.4答案

:1.C.

f(x)=e

x-x-2,f(1)<0,f(2)>0,

即f(1)f(2)<0,∴x∈(1,2).2.C.设f(x)=2x-x2(下表),画出函数y=2x与y=x2的图象(图3-1-2-6).x-1012345f(x)-0.5112-107图3-1-2-6由图与表,知有三个根.拓展提高从上海到美国旧金山的海底电缆有15个接点,此刻某接点发生故障,需实时维修,为了赶快判定故障发生点,一般起码需要检查接点的个数为多少?(此例既表现了二分法的应用价值,也有益于发展学生的应意图识)答案:起码需要检查接点的个数为4.讲堂小结活动:学生先思虑或议论,再回答.教师提示、点拨,实时评论.指引方法:从基本知识基本技术和思想方法双方面来总结.①掌握用二分法求方程的近似解,及二分法的其余应用.②思想方法:函数方程思想、数形联合思想.作业课本P92习题3.1A组1、3.设计感想“猜价钱”的游戏深受人们的喜爱,它是二分法的详细应用,用它引入拉近了数学与生活的距离.二分法是科学的数学方法,它在求方程的近似解和现实生活中都有着宽泛的应用.本节设计牢牢环绕这两其中心睁开,充分借助现代教课手段,用多种角度办理问题,使学生充分领会数学思想方法的科学性与完满性.习题详解(课本第

88页练习

)1.(1)

f(x)=-x

2+3x+5,

作出函数

f(x)

的图象

(图

3-1-2-7(1))

,它与x轴有两个交点,所以方程-x2+3x+5=0有两个不相等的实数根.(2)2x(x-2)=-3可化为2x2-4x+3=0,令f(x)=2x2-4x+3,作出函数f(x)的图象(图3-1-2-7(2)),它与x轴没有交点,所以方程2x(x-2)=-3无实数根.(3)x2=4x-4可化为x2-4x+4=0,令f(x)=x2-4x+4,作出函数f(x)的图象(图3-1-2-7(3)),它与x轴只有一个交点(相切),所以方程x2=4x-4有两个相等的实数根.(4)5x2+2x=3x2+5可化为2x2+2x-5=0,令f(x)=2x2+2x-5,作出函数f(x)的图象(图3-1-2-7(4)),它与x轴有两个交点,所以方程5x2+2x=3x2+5有两个不相等的实数根.图3-1-2-72.(1)

作出

函数

图象

(

3-1-2-8(1)),

因为f(1)=1>0,f(1.5)=-2.875<0,

所以

f(x)=-x

3-3x+5

在区间

(1,1.5)

上有一个零点

.又因为

f(x)

是(-

∞,+∞)上的减函数,所以

f(x)=-x

3-3x+5

在区间(1,1.5)

上有且只有一个零点

.(2)作出函数图象

(

3-1-2-8(2)),

因为

f(3)<0,f(4)>0,

所以f(x)=2x

·ln(x

-2)-3

在区间

(3,4)

上有一个零点

.又因为f(x)=2x·ln(x-2)-3在(2,+∞)上是增函数,所以f(x)在(3,4)上有且仅有一个零点.(3)作出函数图象

(

3-1-2-8(3)),

因为

f(0)<0,f(1)>0,

所以f(x)=e

x-1+4x-4

在区间

(0,1)

上有一个零点

.又因为

f(x)=e

x-1+4x-4

在(-

∞,+∞)上是增函数

,所以

f(x)

在(0,1)上有且仅有一个零点

.(4)作出

函数图

(

3-1-2-8(4)),

因为f(-4)<0,f(-3)>0,f(-2)<0,f(2)<0,f(3)>0,

以f(x)=3(x+2)(x-3)(x+4)+x在(-4,-3),(-3,-2),(2,3)上各有一个零点.图3-1-2-8(课本第91页练习)1.由题设可知f(0)=-1.4<0,f(1)=1.6>0,于是

f(0)

·f(1)<0,所以函数

f(x)

在区间

(0

,1)

内有一个零点

x0.下边用二分法求函数

f(x)=x

3+1.1x

2

在区间

(0,1)

内的零点.取区间

(0,1)

的中点

x1=0.5,

用计算器可算得

f(0.5)=-0.55.因为

f(0.5)

·f(1)<0,

所以

x0∈(0.5,1).再取区间(0.5,1)的中点x2=0.75,用计算器可算得f(0.75)≈0.32.因为f(0.5)·f(0.75)<0,所以x0∈(0.5,0.75).同理,可得x0∈(0.625,0.75),x0∈(0.625,0.6875),x0∈(0.65625,0.6875).因为|0.6875-0.65625|=0.03125<0.1,所以原方程的近似解可取为

0.65625.2.原方程可化为

x+lgx-3=0,

f(x)=x+lgx-3,

用计算器可算得f(2)

-0.70,f(3)

≈0.48.于是

f(2)

·f(3)<0,所以这个方程在区间

(2,3)

内有一个解

x0.下边用二分法求方程x=3-lgx在区间(2,3)的近似解.取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)≈-0.10.因为f(2.5)·f(3)<0,所以x0∈(2.5,3).再取区间(2.5,3)的中点x2=2.75,用计算器可算得f(2.75)≈0.19.因为f(2.5)·f(2.75)<0,所以x0∈(2.5,2.75).同理,可得x∈(2.5,2.625),x0∈(2.5625,2.625),x∈(2.562005,2.59375),x0∈(2.578125,2.59375),x0∈(2.5859375,2.59375).因为|2.5859375-2.59375|=0.0078125<0.01,所以原方程的近似解可取为2.59375.(课本第92页习题3.1)组1.A,C评论:需认识二分法求函数的近似零点的条件.2.由x,f(x)的对应值表可得f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,又依据“假如函数y=f(x)在区间[a,b]上的图象是连续不停的一条曲线,并且f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点.”可知函数f(x)分别在区间(2,3),(3,4),(4,5)内有零点.3.原方程即(x+1)(x-2)(x-3)-1=0,令f(x)=(x+1)(x-2)(x-3)-1,可算得f(-1)=-1,f(0)=5.于是f(-1)·f(0)<0,所以这个方程在区间(-1,0)内有一个解.下边用二分法求方程(x+1)(x-2)(x-3)=1在区间(-1,0)内的近似解.取区间(-1,0)的中点x1=-0.5,用计算器可算得f(-0.5)=3.375.因为

f(-1)·f(-0.5)<0,

所以

x0∈(-1,-0.5).再取(-1,-0.5)的中点x2=-0.75,用计算器可算得f(-0.75)因为f(-1)·f(-0.75)<0,所以x0∈(-1,-0.75).同理,可得x0∈(-1,-0.875),x0∈(-0.9375,-0.875).因为|(-0.875)-(-0.9375)|=0.0625<0.1,所以原方程的近似解可取为-0.9375.

≈1.58.4.原方程即

0.8x-1-lnx=0,

f(x)=0.8

x-1-lnx,f(0)

没存心义,用计算器算得

f(0.5)

≈0.59,f(1)=

-0.2.于是

f(0.5)

·f(1)<0,所以这个方程在区间

(0.5,1)

内有一个解

.下边用二分法求方程

0.8x-1=lnx

在区间

(0,1)内的近似解

.取区间

(0.5

,1)的中点

x1=0.75,用计算器可算得

f(0.75)

≈0.13.因为f(0.75)·f(1)<0,所以x0∈(0.75,1).再取(0.75,1)的中点x2=0.875,用计算器可算得f(0.875)≈-0.04.因为f(0.875)·f(0.75)<0,所以x0∈(0.75,0.875).同理,可得x0∈(0.8125,0.875),x0∈(0.8125,0.84375).因为|0.8125-0.84375|=0.03125<0.1,所以原方程的近似解可取为0.84375.5.由题设有f(2)≈-0.31<0,f(3)≈0.43>0,于是f(2)·f(3)<0,所以函数f(x)在区间(2,3)内有一个零点.下边用二分法求函数f(x)=lnx2在区间(2,3)内的近似解.x取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)≈0.12.因为f(2)·f(2.5)<0,所以x0∈(2,2.5).再取(2,2.5)的中点x2=2.25,用计算器可算得f(2.25)≈-0.08.因为f(2.25)·f(2.5)<0,所以x0∈(2.25,2.5).同理,可得x0∈(2.25,2.375),x0∈(2.3125,2.375),x0∈(2.34375,2.375),x0∈(2.34375,2.359375),x0∈(2.34375,2.3515625),x0∈(2.34375,2.34765625).因为|2.34375-2.34765625|=0.00390625<0.01,所以原方程的近似解可取为2.34765625.组将系数代入求根公式x=bb24ac,得2ax=3(3)242(1)2=317,224所以方程的两个解分别为x1=317,x2=317.44下边用二分法求方程的近似解.取区间(1.775,1.8)和(-0.3,-0.275),令f(x)=2x2-3x-1.在区间(1.775,1.8)内用计算器可算得f(1.775)=-0.02375,f(1.8)=0.08.于是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论