




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,在菱形ABCD中,∠B=120°,对角线AC=6cm,则AB的长为()cmA. B. C. D.2.下列命题中,正确的是()A.平行四边形的对角线相等B.矩形的对角线互相垂直C.菱形的对角线互相垂直且平分D.菱形的对角线相等3.如图,在菱形ABCD中,已知AB=10,AC=16,那么菱形ABCD的面积为()A.48 B.96 C.80 D.1924.下列选项中,平行四边形不一定具有的性质是()A.两组对边分别平行 B.两组对边分别相等C.对角线互相平分 D.对角线相等5.顺次连接四边形各边的中点,所成的四边形必定是()A.等腰梯形 B.直角梯形 C.矩形 D.平行四边形6.如果直线经过第一、二、四象限,且与轴的交点为,那么当时的取值范围是()A. B. C. D.7.下列四个选项中,关于一次函数y=x-2的图象或性质说法错误的是A.y随x的增大而增大 B.经过第一,三,四象限C.与x轴交于-2,0 D.与y轴交于0,-28.已知:在直角坐标系中,点A,B的坐标分别是(1,0),(0,3),将线段AB平移,平移后点A的对应点A′的坐标是(2,﹣1),那么点B的对应点B′的坐标是()A.(2,1) B.(2,3) C.(2,2) D.(1,2)9.下列4个命题:①对角线相等且互相平分的四边形是正方形;②有三个角是直角的四边形是矩形;③对角线互相垂直的平行四边形是菱形;④一组对边平行,另一组对边相等的四边形是平行四边形其中正确的是()A.②③ B.② C.①②④ D.③④10.如图,在Rt△ABC中(AB>2BC),∠C=90°,以BC为边作等腰△BCD,使点D落在△ABC的边上,则点D的位置有()A.2个 B.3个 C.4个 D.5个二、填空题(每小题3分,共24分)11.如图,A,B的坐标为(1,0),(0,2),若将线段AB平移至A1B1,则a﹣b的值为____.12.一个正多边形的每个内角度数均为135°,则它的边数为____.13.在学校组织的科学素养竞赛中,八(3)班有25名同学参赛,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为90分,80分,70分,60分,现将该班的成绩绘制成扇形统计图如图所示,则此次竞赛中该班成绩在70分以上(含70分)的人数有_______人.14.如图,在正方形中,点是对角线上一点,连接,将绕点逆时针方向旋转到,连接,交于点,若,,则线段的长为___________.15.八年级(1)班甲、乙两个小组的10名学生进行飞镖训练,某次训练成绩如下:甲组成绩(环)87889乙组成绩(环)98797由上表可知,甲、乙两组成绩更稳定的是________组.16.如图,直线y=-x+m与y=nx+4n的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n>0的解集为___________.17.如图,在矩形纸片中,,折叠纸片,使点落在边上的点处,折痕为,当点在边上移动时,折痕的端点,也随之移动,若限定点,分别在,边上移动,则点在边上可移动的最大距离为__________.18.如图,已知直线、相交于点,平分,如果,那么__________度.三、解答题(共66分)19.(10分)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C处,在AC上,甲的速度是乙的速度的1.5倍,设t分后甲、乙两遥控车与B处的距离分别为d1,d2(单位:米),则d1,d2与t的函数关系如图,试根据图象解决下列问题.(1)填空:乙的速度v2=________米/分;
(2)写出d1与t的函数表达式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探究什么时间两遥控车的信号不会产生相互干扰?20.(6分)如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F.(1)试说明△ABD≌△BCE;(2)△AEF与△BEA相似吗?请说明理由;(3)BD2=AD·DF吗?请说明理由.21.(6分)如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF.(1)求证:四边形AECF为菱形.(2)若AB=4,BC=8,求菱形AECF的周长.22.(8分)计算(1)×(2)()0+-(-)-223.(8分)已知:是一元二次方程的两实数根.(1)求的值;(2)求x1x2的值.24.(8分)如图,菱形ABCD中,E为对角线BD的延长线上一点.(1)求证:AE=CE;(2)若BC=6,AE=10,∠BAE=120°,求DE的长.25.(10分)如图,中,点,分别是边,的中点,过点作交的延长线于点,连结.(1)求证:四边形是平行四边形.(2)当时,若,,求的长.26.(10分)为增强学生的身体素质,教育行政部门规定每位学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求户外活动时间为1.5小时的人数,并补充频数分布直方图;(3)户外活动时间的众数和中位数分别是多少?(4)若该市共有20000名学生,大约有多少学生户外活动的平均时间符合要求?
参考答案一、选择题(每小题3分,共30分)1、D【解析】
作辅助线,证明Rt△AEB为特殊的直角三角形,利用三角函数即可求解.【详解】如下图,连接BD,角AC于点E,∵四边形ABCD为菱形,∴AC⊥BD,∠AEB=90°,BD平分∠ABC,即∠ABE=60°,AE=3cm,在Rt△AEB中,AE=3cm,∴AB==3=2故选D.【点睛】本题考查了菱形的性质,三角函数的实际应用,中等难度,作辅助线是解题关键.2、C【解析】分析:根据平行四边形、矩形、菱形的性质分别判断得出即可.详解:A.根据平行四边形的性质,平行四边形的对角线互相平分不相等,故此选项错误;B.根据矩形的性质,矩形的对角线相等,不互相垂直,故此选项错误;C.根据菱形的性质,菱形的对角线互相垂直且平分,故此选项正确;D.根据菱形的性质,菱形的对角线互相垂直且平分但不相等,故此选项错误.故选C.点睛:本题主要考查平行四边形、矩形、菱形的性质,熟练掌握相关定理是解题的关键.3、B【解析】
根据菱形的性质利用勾股定理求得OB的长,从而得到BD的长,再根据菱形的面积公式即可求得其面积.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=AC,在Rt△AOB中,BO==6,则BD=2BO=12,故S菱形ABCD=AC×BD=1.故选:B.【点睛】此题考查学生对菱形的性质及勾股定理的理解及运用.4、D【解析】
根据平行四边形的性质:平行四边形的对边相等且平行,对角线互相平分,可得正确选项.【详解】∵平行四边形的对边平行且相等,对角相等,对角线互相平分,∴选项A.B.C正确,D错误.故选D.【点睛】本题考查平行四边形的性质,解题关键在于对平行四边形性质的理解.5、D【解析】
根据题意,画出图形,连接AC、BD,根据一组对边平行且相等的四边形是平行四边形进行判定.【详解】解:四边形ABCD的各边中点依次为E、F、H、G,∴EF为△ABD的中位线,GH为△BCD的中位线,∴EF∥BD,且EF=BD,GH∥BD,且GH=BD,∴EF∥GH,EF=GH,∴四边形EFHG是平行四边形.故选:D.【点睛】此题考查平行四边形的判定和三角形中位线定理.解题的关键是正确画出图形,注意利用图形求解.6、B【解析】
根据题意大致画出图象,然后数形结合即可确定x的取值范围.【详解】∵直线经过第一、二、四象限,且与轴的交点为,∴图象大致如图:由图可知,当时的取值范围是,故选:B.【点睛】本题主要考查一次函数的图象及性质,掌握一次函数的图象及性质并能够数形结合是解题的关键.7、C【解析】
根据一次函数的图象和性质,判断各个选项中的说法是否正确即可.【详解】解:∵y=x−2,k=1,∴该函数y随x的增大而增大,故选项A正确,该函数图象经过第一、三、四象限,故选项B正确,与x轴的交点为(2,0),故选项C错误,与y轴的交点为(0,−2),故选项D正确,故选:C.【点睛】本题考查一次函数的图象和性质,解答本题的关键是明确题意,利用一次函数的性质解答.8、D【解析】
根据点A、A′的坐标确定出平移规律,然后根据规律求解点B′的坐标即可.【详解】∵A(1,0)的对应点A′的坐标为(2,﹣1),∴平移规律为横坐标加1,纵坐标减1,∵点B(0,3)的对应点为B′,∴B′的坐标为(1,2).故选D.【点睛】本题考查了坐标与图形变化−平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.9、A【解析】
根据正方形的判定,矩形的判定、菱形的判定和平行四边形的判定判断即可【详解】①对角线相等且互相垂直平分的四边形是正方形,少“垂直”,故错;②四边形的三个角是直角,由内角和为360°知,第四个角必是直角,正确;③平行四边形对角线互相平分,加上对角线互相垂直,是菱形,故正确;④有可能是等腰梯形,故错,正确的是②③【点睛】此题考查正方形的判定,矩形的判定、菱形的判定和平行四边形的判定,解题关键在于掌握判定定理10、C【解析】
分情况,BC为腰,BC为底,分别进行判断得到答案即可【详解】以BC为腰时,以B为圆心画圆将会与AB有一个交点、以C为圆心画圆同样将会与AB有两个个交点;以BC为底时,做BC的垂直平分线将会与AB有一个交点,所以BC为边作等腰三角形在AB上可找到4个点,故选C【点睛】本题主要考查等腰三角形的性质,充分理解基本性质能够分情况讨论是本题关键二、填空题(每小题3分,共24分)11、1【解析】试题解析:由B点平移前后的纵坐标分别为2、4,可得B点向上平移了2个单位,由A点平移前后的横坐标分别是为1、3,可得A点向右平移了2个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=2,b=2,故a-b=1.【点睛】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.12、8【解析】
试题分析:多边形的每一个内角的度数=,根据公式就可以求出边数.【详解】设该正多边形的边数为n由题意得:=135°解得:n=8故答案为8.【点睛】考点:多边形的内角和13、21【解析】
首先根据统计图,求出此次竞赛中该班成绩在70分以上(含70分)的人数所占比例,然后已知总数,即可得解.【详解】根据统计图的信息,得此次竞赛中该班成绩在70分以上(含70分)的人数所占比例为此次竞赛中该班成绩在70分以上(含70分)的人数为故答案为21.【点睛】此题主要考查扇形统计图的相关知识,熟练掌握,即可解题.14、【解析】
连接EF,过点E作EM⊥AD,垂足为M,设ME=HE=FH=x,则GH=3-x,从而可得到,于是可求得x的值,最后在Rt△AME中,依据勾股定理可求得AE的长.【详解】解:如图所示:连接EF,过点E作EM⊥AD,垂足为M.∵ABCD为正方形,EM⊥AD,∠EDF=90°,AD=BC=CD=DG+CG=5,∴△MED和△DEF均为等腰直角三角形.∵DE=DF,∠EDH=∠FDH=45°,∴DH⊥EF,EH=HF,∴FH∥BC.设ME=HE=FH=x,则GH=3﹣x.由FH∥BC可知:,即,解得:,∴.在Rt△AME中,.故答案为:.【点睛】本题主要考查的是正方形的性质、等腰直角三角形的性质和判定、平行线分线段成比例定理、勾股定理的应用,求得ME的长是解题的关键.15、甲【解析】
根据方差计算公式,进行计算,然后比较方差,小的稳定,在计算方差之前还需先计算平均数.【详解】=8,=8,[(8-8)2+(7-8)2+(8-8)2+(8-8)2+(9-8)2]=0.4,[(9-8)2+(8-8)2+(7-8)2+(9-8)2+(7-8)2]=0.8∵<∴甲组成绩更稳定.故答案为:甲.【点睛】考查平均数、方差的计算方法,理解方差是反映一组数据的波动大小的统计量,方差越小,数据越稳定.16、【解析】
令时,解得,则与x轴的交点为(﹣4,0),再根据图象分析即可判断.【详解】令时,解得,故与x轴的交点为(﹣4,0).由函数图象可得,当时,函数的图象在x轴上方,且其函数图象在函数图象的下方,故解集是.故答案为:.【点睛】本题考查了一次函数与一元一次不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.17、1【解析】
分别利用当点M与点A重合时,以及当点N与点C重合时,求出AH的值进而得出答案.【详解】解:如图1,当点M与点A重合时,根据翻折对称性可得AH=AD=5,
如图2,当点N与点C重合时,根据翻折对称性可得CD=HC=13,
在Rt△HCB中,HC2=BC2+HB2,即132=(13-AH)2+52,
解得:AH=1,
所以点H在AB上可移动的最大距离为5-1=1.
故答案为:1.【点睛】本题主要考查的是折叠的性质、勾股定理的应用,注意利用翻折变换的性质得出对应线段之间的关系是解题关键.18、1【解析】
先根据角平分线的定义,求出∠BOC的度数,再根据邻补角的和等于11°求解即可.【详解】解:∵平分,,∴,∴,故答案为:1.【点睛】本题考查了角平分线的定义以及邻补角的性质,属于基础题.三、解答题(共66分)19、(2)40;(2)当0≤t≤2时,d2=﹣60t+60;当2<t≤3时,d2=60t﹣60;(3)当0≤t<2.5时,两遥控车的信号不会产生相互干扰.【解析】
(2)根据路程与时间的关系,可得答案;(2)根据甲的速度是乙的速度的2.5倍,可得甲的速度,根据路程与时间的关系,可得a的值,根据待定系数法,可得答案;(3)根据两车的距离,可得不等式,根据解不等式,可得答案.【详解】(2)乙的速度v2=220÷3=40(米/分),(2)v2=2.5v2=2.5×40=60(米/分),60÷60=2(分钟),a=2,d2=;(3)d2=40t,当0≤t<2时,d2-d2>20,即-60t+60+40t>20,解得0≤t<2.5,∵0≤t<2,∴当0≤t<2时,两遥控车的信号不会产生相互干扰;当2≤t≤3时,d2-d2>20,即40t-(60t-60)>20,当2≤t<时,两遥控车的信号不会产生相互干扰综上所述:当0≤t<2.5时,两遥控车的信号不会产生相互干扰.20、(1)见解析;(2)见解析;(3)见解析;【解析】
(1)∵△ABC是等边三角形,∴AB=BC,∠ABD=∠BCE,又∵BD=CE,∴△ABD≌△BCE;(2)△AEF与△BEA相似.由(1)得:∠BAD=∠CBE,又∵∠ABC=∠BAC,∴∠ABE=∠EAF,又∵∠AEF=∠BEA,∴△AEF∽△BEA;(3)BD2=AD•DF.由(1)得:∠BAD=∠FBD,又∵∠BDF=∠ADB,∴△BDF∽△ADB,∴,即BD2=AD•DF.【点睛】本题主要考查等边三角形的性质和全等三角形的判定与性质以及相似三角形的判定和性质等知识点,解答本题的关键是要熟练掌握三角形全等的判定与性质定理.21、(1)详见解析;(2)20【解析】
(1)求出AO=OC,∠AOE=∠COF,根据平行线的性质得出∠EAO=∠FCO,根据ASA推出:△AEO≌△CFO;根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC即可推出四边形是菱形;(2)设菱形AECF的边长为x由题意得:AF=x,CF=x,BF=8-x,再利用勾股定理进行计算即可解答.【详解】(1)∵四边形ABCD为矩形,∴AD∥BC,∴∠EAC=∠ACF,又∵EF是AC的垂直平分线,∴OA=OC,∠AOE=∠COF=90°,在△AOE和△COF中,∠AOE=∠COFOC=OA∴△AOE≌△COF∴OE=OF∵OA=OC,∴四边形AECF为平行四边形.∵AC⊥EF.∴四边形AECF为菱形(2)解:设菱形AECF的边长为x由题意得:AF=x,CF=x.又∵BF=BC-CF,BC=8,∴BF=8-x,∵四边形ABCD为矩形,∴∠B=90°,在Rt△ABC中,由勾股定理得:又∵AB=4,BF=8-x,AF=x,∴16+(8-x)2=∴菱形AECF的周长=5×4=20【点睛】此题考查线段垂直平分线的性质,菱形的判定与性质,矩形的性质,解题关键在于证明△AEO≌△CFO.22、(1);(2)2-1【解析】
(1)首先计算二次根式的乘法,再计算二次根式的除法即可;(2)首先计算零次幂、二次根式的化简、负整数指数幂,然后再计算加减即可.【详解】解:(1)原式===×=×=;(2)原式=1+2-4=2-1.【点睛】此题主要考查了二次根式的混合运算和零次幂、负整数指数幂,关键是熟练掌握各计算公式和计算法则.23、(1)27;(2)【解析】
(1)根据根与系数的关系,求出和的值,即可得到答案;(2)根据题意,可得,计算即可得到答案.【详解】解:(1)∵是一元二次方程的两实数根,∴,,∴;(2)根据题意,,∴;【点睛】本题考查了一元二次方程的根与系数的关系,解题的关键是掌握,,然后变形计算即可.24、(1)见解析;(2)DE=【解析】
(1)根据菱形的性质,证明ΔABE≅ΔCBE即可解答(2)作BF⊥AE于,利用勾股定理得出BE=14,作CM⊥BD于M,设DE=x,DM=BM=y,根据勾股定理得出ME2=【详解】(1)证明:∵四边形ABCD是菱形,BD为对角线∴AB=BC=CD=DA在ΔABE和ΔCBE中,∵AB=BC,∠ABE=∠CBE,BE=BE∴Δ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论