版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Section10.3ApplicationofDifferentialCalculusofMultivariableFunctioninGeometry12OverviewCURVESURFACE1)Tangentlineandnormalplane2)Tangentplanesandnormallines3TheParametricEquationsofaSpaceCurveWealreadyknowthataplanecurvecanberepresentedbyaparametricbyaparametricequations,alineinspacecanbeexpressedequationsorofthevariablepointP(x,y,z).whereisthepositionvector4TheParametricEquationsofaSpaceCurveSimilarly,aspacecurveΓ
mayalsoberepresentedbyparametricequationsorvectorformiscontinuousIfthevectorvaluedfunctionthenΓissaidtobeaontheintervalcontinuouscurve;IfΓisacontinuouscurveandholdsforanyand,thenΓissaidtobeasimplecurve.5ThetangentlinetoΓThegeometricmeaningofthederivativeofthedirectionvectorr(t)att0isthatr′(t0)isthedirectionvectorofthetangenttothecurveΓatthecorrespondingpointP0.r′(t0)iscalledthetangentvectortothecurveΓatP0.P0OxyzTTheVectorequationofthetangenttothecurveΓatP0
is6TheequationofthetangentlinetocurveΓTheVectorequation:TheParametricequation:TheSymmetricequation:7ThetangentlinetoΓAcurveforwhichthedirectionofthetangentvariescontinuouslyiscalledasmoothcurve.ExampleOxyΓ2yOxΓ1piecewisesmoothcurve8ThenormalplanetoΓWehaveseenthatforagivenspacecurveΓ
if
r(t)isderivableatt0andr′(t0)≠0,thenthetangenttoΓatP0existsandisunique.ThereisaninfinitenumberofstraightlinesthroughthepointP0
,whichareperpendiculartothetangentandlieinthesameplane.TheplaneiscalledthenormalplanetothecurveΓatP0.
throughthepointP0
perpendiculartothetangenttheequationofthenormalplane9ThenormalplanetoΓTheequationofthenormalplanetothecurveΓatP0isExample
Find
theequationsofthetangentlineandthenormalplane
tothefollowingcurveΓatpointt=1.10TangentlineandnormalplanetoaspacecurveIftheequationsofthecurveΓisgiveninthegeneralformandtheaboveequationsofthecurveΓdeterminetwoimplicitfunctionsofonevariablex,y=y(x)andz=z(x)intheneighbourhoodU(P0)andbothy(x)andz(x)havecontinuousderivative.Thenthesymmetricequationofthe
tangent
atP0(x0,y0,z0)is:11Tangentlineandnormalplanetoaspacecurveandtheequationofthenormalplane
atP0(x0,y0,z0)is:
ExampleFindtheequationsofthetangentlineandthenormalplanetothecurveatpointP0(-2,1,6).122.TangentplanesandnormallinesofsurfacesNormallineTangentplane13ParametrizingAnyspacepointcanbeimaginedthatitliesonaspherewhichiscenteredattheoriginandtheradiusisIftheanglebetweentheprojectionvectoronthexOyplaneandthepositiveofdirectionofx-axisisdenotedbyθ,andandthepositivedirectionofz-axistheanglebetweenthevectorisdenotedbythenthetwocoordinatesystemarerelatedby14ParametrizingIfwedenotethesurfaceoftheanglebetweentheprojectionvectorofonthexOyplaneandthepositivedirectionofx-axisisdenotedbyθ,andThenthecoordinatecanbeexpressedbyliesonAnotherwaytoparametrizeisimaginethatanypointisalsoapointofaspacecurveoraspacesurface,thenIfwecanparametrizetheequationofthecurveorsurface.15TangentPlanesandNormalLinestoaSurfaceSupposethattheparametricequationofasurfaceSisandthepartialwhereriscontinuousinD,thepointexist,thatis,derivativesofratthepoint,thenthewecanprovethatifisdifferentiableatthepointtangentplaneofanysmoothcurveonthesurfacethroughthepointr0,withnormalvectormustlieintheplanewhichpassthroughiscalledaregularpoint).and(inthiscase,16TangentPlanesandNormalLinestoaSurfaceTherefore,thenormalvectorisThusthetangentplaneisThenormallineis17TangentPlanesandNormalLinestoaSurfaceExample
Findthetangentplaneandnormallinetotherighthelicoidatthepoint18TangentPlanesandNormalLinestoaSurfacederivativesofFareallcontinuousandthevectorsaywhichisdeterminedbyThen,thereexistsafunction,ifallthefirstorderpartialIfthesurfaceSisexpressedbyThus,thesurfaceandhascontinuouspartialderivative.ScanberepressedbyItiseasytoseethatthenwehaveor19TangentPlanesandNormalLinestoaSurfaceThenormallineis20TangentPlanesandNormalLinestoaSurface
ExampleGivenanellipsoidandaplane1)Findthetangentplanetotheellipsoidatthepo
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 牛津译林版(2020)必修一-Unit1 Back to school基础夯实训练~词汇短语句型(含答案)
- 物业客服述职报告
- 湖南省2025届高三九校联盟第一次联考地理试题(含答案)
- 高一 人教版 数学-第四章《函数模型的应用(二)》课件
- 2024年中央经济工作会议精神要点梳理
- 高一人教版英语必修二第一单元《Discovering Useful Structures using structures》课件
- 浙江省金华市十校2023-2024学年高三上学期语文2月期末考试试卷
- 名企风采(山东外贸职业学院)知到智慧树答案
- 年20万吨节能环保型石灰生产线建设可行性研究报告
- LNG项目商业计划书
- 汽车介绍-迈巴赫62s鉴赏
- 《生产安全事故报告和调查处理条例》解读
- 茶园新区规划方案图
- 贸易业务风险管理制度
- 大学生健康管理职业生涯规划书
- 婴幼儿托育服务与管理职业规划
- 赣美版小学五年级美术上册第课 多姿多彩的风筝
- 女性酒类行业分析
- 五育并举方案
- 危重孕产妇和新生儿救治中心
- 电网安全生产风险管理体系介绍课件
评论
0/150
提交评论