




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Section10.3ApplicationofDifferentialCalculusofMultivariableFunctioninGeometry12OverviewCURVESURFACE1)Tangentlineandnormalplane2)Tangentplanesandnormallines3TheParametricEquationsofaSpaceCurveWealreadyknowthataplanecurvecanberepresentedbyaparametricbyaparametricequations,alineinspacecanbeexpressedequationsorofthevariablepointP(x,y,z).whereisthepositionvector4TheParametricEquationsofaSpaceCurveSimilarly,aspacecurveΓ
mayalsoberepresentedbyparametricequationsorvectorformiscontinuousIfthevectorvaluedfunctionthenΓissaidtobeaontheintervalcontinuouscurve;IfΓisacontinuouscurveandholdsforanyand,thenΓissaidtobeasimplecurve.5ThetangentlinetoΓThegeometricmeaningofthederivativeofthedirectionvectorr(t)att0isthatr′(t0)isthedirectionvectorofthetangenttothecurveΓatthecorrespondingpointP0.r′(t0)iscalledthetangentvectortothecurveΓatP0.P0OxyzTTheVectorequationofthetangenttothecurveΓatP0
is6TheequationofthetangentlinetocurveΓTheVectorequation:TheParametricequation:TheSymmetricequation:7ThetangentlinetoΓAcurveforwhichthedirectionofthetangentvariescontinuouslyiscalledasmoothcurve.ExampleOxyΓ2yOxΓ1piecewisesmoothcurve8ThenormalplanetoΓWehaveseenthatforagivenspacecurveΓ
if
r(t)isderivableatt0andr′(t0)≠0,thenthetangenttoΓatP0existsandisunique.ThereisaninfinitenumberofstraightlinesthroughthepointP0
,whichareperpendiculartothetangentandlieinthesameplane.TheplaneiscalledthenormalplanetothecurveΓatP0.
throughthepointP0
perpendiculartothetangenttheequationofthenormalplane9ThenormalplanetoΓTheequationofthenormalplanetothecurveΓatP0isExample
Find
theequationsofthetangentlineandthenormalplane
tothefollowingcurveΓatpointt=1.10TangentlineandnormalplanetoaspacecurveIftheequationsofthecurveΓisgiveninthegeneralformandtheaboveequationsofthecurveΓdeterminetwoimplicitfunctionsofonevariablex,y=y(x)andz=z(x)intheneighbourhoodU(P0)andbothy(x)andz(x)havecontinuousderivative.Thenthesymmetricequationofthe
tangent
atP0(x0,y0,z0)is:11Tangentlineandnormalplanetoaspacecurveandtheequationofthenormalplane
atP0(x0,y0,z0)is:
ExampleFindtheequationsofthetangentlineandthenormalplanetothecurveatpointP0(-2,1,6).122.TangentplanesandnormallinesofsurfacesNormallineTangentplane13ParametrizingAnyspacepointcanbeimaginedthatitliesonaspherewhichiscenteredattheoriginandtheradiusisIftheanglebetweentheprojectionvectoronthexOyplaneandthepositiveofdirectionofx-axisisdenotedbyθ,andandthepositivedirectionofz-axistheanglebetweenthevectorisdenotedbythenthetwocoordinatesystemarerelatedby14ParametrizingIfwedenotethesurfaceoftheanglebetweentheprojectionvectorofonthexOyplaneandthepositivedirectionofx-axisisdenotedbyθ,andThenthecoordinatecanbeexpressedbyliesonAnotherwaytoparametrizeisimaginethatanypointisalsoapointofaspacecurveoraspacesurface,thenIfwecanparametrizetheequationofthecurveorsurface.15TangentPlanesandNormalLinestoaSurfaceSupposethattheparametricequationofasurfaceSisandthepartialwhereriscontinuousinD,thepointexist,thatis,derivativesofratthepoint,thenthewecanprovethatifisdifferentiableatthepointtangentplaneofanysmoothcurveonthesurfacethroughthepointr0,withnormalvectormustlieintheplanewhichpassthroughiscalledaregularpoint).and(inthiscase,16TangentPlanesandNormalLinestoaSurfaceTherefore,thenormalvectorisThusthetangentplaneisThenormallineis17TangentPlanesandNormalLinestoaSurfaceExample
Findthetangentplaneandnormallinetotherighthelicoidatthepoint18TangentPlanesandNormalLinestoaSurfacederivativesofFareallcontinuousandthevectorsaywhichisdeterminedbyThen,thereexistsafunction,ifallthefirstorderpartialIfthesurfaceSisexpressedbyThus,thesurfaceandhascontinuouspartialderivative.ScanberepressedbyItiseasytoseethatthenwehaveor19TangentPlanesandNormalLinestoaSurfaceThenormallineis20TangentPlanesandNormalLinestoaSurface
ExampleGivenanellipsoidandaplane1)Findthetangentplanetotheellipsoidatthepo
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 股权质押借款合同范本
- 电缆线材采购合同
- 中小学师德师风学习心得体会(5篇)
- 绿色食品种植协议
- 施工过程回顾合同
- 商城代运营协议合同协议
- 商业调查合同协议
- 员工琅东合同协议
- 员工解约协议合同协议
- 商场餐饮抽点合同协议
- 2025-2030中国宠物行业市场发展分析及发展趋势与投资前景预测报告
- AGC-AVC培训课件教学课件
- 境外道路货物运输应急预案
- 二极管整流滤波电路课件
- JC01基础心理学单科作业题汇总(含解析)
- 中考英语读写综合练习
- 混凝土供应保证方案 2
- 慢性阻塞性肺疾病入院记录模板-病历书写
- 新疆维吾尔自治区和田地区各县区乡镇行政村村庄村名居民村民委员会明细及行政区划代码
- 软件测试技术课程教学大纲
- 液压与气压传动完整版课件
评论
0/150
提交评论