版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.若点在反比例函数的图像上,则下列各点一定在该图像上的是()A. B. C. D.2.对于一次函数y=﹣2x+4,下列结论错误的是()A.函数的图象不经过第三象限B.函数的图象与x轴的交点坐标是(2,0)C.函数的图象向下平移4个单位长度得y=﹣2x的图象D.若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,则y1<y23.如图,若一次函数的图象与x轴的交于点,与y轴交于点下列结论:①关于x的方程的解为;②随x的增大而减小;③关于x的方程的解为;④关于x的不等式的解为其中所有正确的为A.①②③ B.①③ C.①②④ D.②④4.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为()A.40° B.36° C.30° D.25°5.如图,在中,是上一点,,,垂足为,是的中点,若,则的长度为()A.36 B.18 C.9 D.56.如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cm C.10cm D.20cm7.如图,过正五边形的顶点作直线,则的度数为()A. B. C. D.8.在中,,则的长为()A.2 B. C.4 D.4或9.要使分式有意义,则x应满足的条件是()A.x≠1 B.x≠﹣1 C.x≠0 D.x>110.已知平行四边形中,一个内角,那么它的邻角().A. B. C. D.11.函数y=x+3中,自变量xA.x>-3 B.x≥-3 C.x12.下列方程中,判断中错误的是()A.方程是分式方程 B.方程是二元二次方程C.方程是无理方程 D.方程是一元二次方程二、填空题(每题4分,共24分)13.如图,在边长为1的等边△ABC的边AB取一点D,过点D作DE⊥AC于点E,在BC延长线取一点F,使CF=AD,连接DF交AC于点G,则EG的长为________14.平面直角坐标系中,A、O两点的坐标分别为(2,0),(0,0),点P在正比例函数y=x(x>0)图象上运动,则满足△PAO为等腰三角形的P点的坐标为_____.15.如图,以位似中心,扩大到,各点坐标分别为(1,2),(3,0),(4,0)则点坐标为_____________.16.观察:①,②,③,…,请你根据以上各式呈现的规律,写出第6个等式:__________.17.如图,平行四边形中,点是边上一点,连接,将沿着翻折得,交于点.若,,,则_____.18.频数直方图中,一小长方形的频数与组距的比值是6,组距为3,则该小组的频数是_____.三、解答题(共78分)19.(8分)“垃圾分一分,环境美十分”.甲、乙两城市产生的不可回收垃圾需运送到、两垃圾场进行处理,其中甲城市每天产生不可回收垃圾吨,乙城市每天产生不可回收垃圾吨。、两垃圾场每天各能处理吨不可回收垃圾。从垃圾处理场到甲城市千米,到乙城市千米;从垃圾处理场到甲城市千米,到乙城市千米。(1)请设计一个运输方案使垃圾的运输量(吨.千米)尽可能小;(2)因部分道路维修,造成运输量不低于吨,请求出此时最合理的运输方案.20.(8分)提出问题:(1)如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:AE=DH;类比探究:(2)如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG于点O,探究线段EF与HG的数量关系,并说明理由.21.(8分)已知某实验中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草坪,经测量∠A=90°,AC=3m,BD=12m,CB=13m,DA=4m,若每平方米草坪需要300元,间学校需要投入多少资金买草坪?22.(10分)如图1,将矩形纸片ABCD沿对角线BD向上折叠,点C落在点E处,BE交AD于点F.(1)求证:BF=DF;(2)如图2,过点D作DG∥BE交BC于点G,连接FG交BD于点O,若AB=6,AD=8,求FG的长.23.(10分)某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?24.(10分)阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日”某校本学年开展了读书活动,在这次活动中,八年级班40名学生读书册数的情况如表读书册数45678人数人6410128根据表中的数据,求:(1)该班学生读书册数的平均数;(2)该班学生读书册数的中位数.25.(12分)1号探测气球从海拔5m处出发,以1m/min的速度上升.与此同时,2号探测气球从海拔15m处出发,以0.5m/min的速度上升.两个气球都匀速上升了50min.设气球上升时间为x(x≥0).(Ⅰ)根据题意,填写下表上升时间/min1030…x1号探测气球所在位置的海拔/m15…2号探测气球所在位置的海拔/m30…(Ⅱ)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由.(Ⅲ)当0≤x≤50时,两个气球所在位置的海拔最多相差多少米?26.已知y与x+1成正比例,当x=1时,y=3,求y与x的函数关系式.
参考答案一、选择题(每题4分,共48分)1、C【解析】
将点(-1,2)代入反比例函数,求得,再依次将各个选项代入解析式,即可求解.【详解】解:将点(-1,2)代入中,解得:,∴反比例函数解析式为,时,,A错误;时,,B错误;时,,C正确;时,,D错误;故选C.【点睛】本题考查反比例函数,难度一般,熟练掌握反比例函数上的点一定满足函数解析式,即可顺利解题.2、D【解析】
根据一次函数的性质和一次函数图象上点的坐标特征以及一次函数的几何变换进行判断.【详解】解:A、k=﹣2,b=4,函数的图象经过第一、二、四象限,不经过第三象限,不符合题意;B、函数的图象与x轴的交点坐标是(2,0),不符合题意;C、函数的图象向下平移4个单位长度得y=﹣2x的图象,不符合题意;D、若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,则y2<y1,符合题意;故选D.【点睛】本题考查了一次函数的性质:当k>0,y随x的增大而增大,函数从左到右上升;当k<0,y随x的增大而减小,函数从左到右下降.也考查了一次函数图象的几何变换.3、A【解析】
根据一次函数的性质进行分析即可.一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-,0);当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小.根据2分析函数与方程和不等式的关系.【详解】解:根据题意可知:由直线与x轴交点坐标可知关于x的方程的解为;由图象可知随x的增大而减小;由直线与y轴的交点坐标可知关于x的方程的解为;由函数图象分析出y>0时,关于x的不等式的解为所以,正确结论是:①②③.故选A.【点睛】本题考核知识点:一次函数的性质.解题关键点:结合函数的图象分析问题.4、B【解析】
根据AB=AC可得∠B=∠C,CD=DA可得∠ADB=2∠C=2∠B,BA=BD,可得∠BDA=∠BAD=2∠B,在△ABD中利用三角形内角和定理可求出∠B.【详解】解:∵AB=AC,∴∠B=∠C,∵CD=DA,∴∠C=∠DAC,∵BA=BD,∴∠BDA=∠BAD=2∠C=2∠B,设∠B=α,则∠BDA=∠BAD=2α,又∵∠B+∠BAD+∠BDA=180°,∴α+2α+2α=180°,∴α=36°,即∠B=36°,故选:B.【点睛】本题主要考查等腰三角形的性质,掌握等边对等角是解题的关键,注意三角形内角和定理和方程思想的应用.5、C【解析】
根据三角形的中位线定理,在三角形中准确应用,并且求证E为CD的中点,再求证EF为△BCD的中位线,从而求得结论.【详解】∵在△ACD中,∵AD=AC,AE⊥CD,∴E为CD的中点,又∵F是CB的中点,∴EF为△BCD的中位线,∴EF∥BD,EF=BD,∵BD=18,∴EF=9,故选:C.【点睛】本题考查了三角形中位线定理和等腰三角形的性质.三角形中位线的性质:三角形的中位线平行于第三边且等于第三边的一半.6、D【解析】
根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长;设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,可求出r;接下来根据圆锥的母线长、底面圆的半径以及圆锥的高构成直角三角形,利用勾股定理可计算出圆锥的高.【详解】过O作OE⊥AB于E,如图所示.∵OA=OB=60cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=
OA=30cm,∴弧CD的长==20π,设圆锥的底面圆的半径为r,则2πr=20π,解得r=10,∴由勾股定理可得圆锥的高为:cm.故选D.【点睛】本题考查了勾股定理,扇形的弧长公式,圆锥的计算,圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7、A【解析】
由两直线平行,内错角相等及正五边形内角的度数即可求解.【详解】解:由正五边形ABCDE可得,又故答案为:A【点睛】本题主要考查了正多边形的内角及平行线的性质,掌握正多边形内角的求法是解题的关键.正n边形每个内角的度数为.8、D【解析】
分b是斜边、b是直角边两种情况,根据勾股定理计算即可.【详解】解:当b是斜边时,c=,当b是直角边时,c=,则c=4或,故选:D.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.9、B【解析】
根据分式有意义的条件可得x+1≠0,再解即可.【详解】由题意得:x+1≠0,解得:x≠-1,故选B.【点睛】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.10、C【解析】
根据平行四边形的性质:邻角互补,求解即可.【详解】∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∵∠A=60°,∴∠B=120°,故选C.【点睛】本题考查了平行四边形的性质:邻角互补,属于基础性题目.11、B【解析】
根据被开方数大于等于0列式进行计算即可得解.【详解】根据题意得,x+3⩾0,解得x⩾−3.故选B.12、C【解析】
逐一进行判断即可.【详解】A.方程是分式方程,正确,故该选项不符合题意;B.方程是二元二次方程,正确,故该选项不符合题意;C.方程是一元二次方程,错误,故该选项符合题意;D.方程是一元二次方程,正确,故该选项不符合题意;故选:C.【点睛】本题主要考查方程的概念,掌握一元二次方程,分式方程,二元二次方程,无理方程的概念是解题的关键.二、填空题(每题4分,共24分)13、【解析】
过D作BC的平行线交AC于H,通过求证△DHG和△FCG全等,推出HG=CG,再通过证明△ADH是等边三角形和DE⊥AC,推出AE=EH,即可推出AE+GC=EH+HG,可得EG=AC,即可推出EG的长度.【详解】解:如图,过D作DH∥BC,交AC于点H.∴∠F=∠GDH,∵△ABC是等边三角形,∴∠ADH=∠B=60°,∠AHD=∠ACB=60°,∴△ADH是等边三角形,∴AD=DH,∵AD=CF,∴DH=CF,∵∠DGH=∠FGC,∴△DGH≌△FGC(AAS),∴HG=CG.∵DE⊥AC,△ADH是等边三角形,∴AE=EH,∴AE+CG=EH+HG,∴EG=AC=;故答案为:.【点睛】本题主要考查等边三角形的判定与性质、平行线的性质、全等三角形的判定与性质,关键在于正确地作出辅助线,熟练运用相关的性质、定理,认真地进行计算.14、(1,1)或(,)或(1,1)【解析】
分OP=AP、OP=OA、AO=AP三种情况考虑:①当OP1=AP1时,△AOP1为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P1的坐标;②当OP1=OA时,过点P1作P1B⊥x轴,则△OBP1为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P1的坐标;③当AO=AP3时,△OAP3为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P3的坐标.综上即可得出结论【详解】∵点A的坐标为(1,0),∴OA=1.分三种情况考虑,如图所示.①当OP1=AP1时,∵∠AOP1=45°,∴△AOP1为等腰直角三角形.又∵OA=1,∴点P1的坐标为(1,1);②当OP1=OA时,过点P1作P1B⊥x轴,则△OBP1为等腰直角三角形.∵OP1=OA=1,∴OB=BP1=,∴点P1的坐标为(,);③当AO=AP3时,△OAP3为等腰直角三角形.∵OA=1,∴AP3=OA=1,∴点P3的坐标为(1,1).综上所述:点P的坐标为(1,1)或(,)或(1,1).故答案为:(1,1)或(,)或(1,1).【点睛】本题考查了一次函数图象上点的坐标特征、等腰三角形的性质以及等腰直角三角形的性质,分OP=AP、OP=OA、AO=AP三种情况求出点P的坐标是解题的关键.15、【解析】
由图中数据可得两个三角形的位似比,进而由点A的坐标,结合位似比即可得出点C的坐标.【详解】解:∵△AOB与△COD是位似图形,
OB=3,OD=1,所以其位似比为3:1.
∵点A的坐标为A(1,2),
∴点C的坐标为.故答案为:.【点睛】本题主要考查了位似变换以及坐标与图形结合的问题,解题的关键是根据题意求得其位似比.16、【解析】
第n个等式左边的第1个数为2n+1,根号下的数为n(n+1),利用完全平方公式得到第n个等式右边的式子为(n≥1的整数),直接利用已知数据得出数字变化规律,进而得出答案.【详解】解:∵①,
②,
③,……
∴第n个式子为:,
∴第6个等式为:
故答案为:.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17、【解析】
通过证明△AB'F∽△DEF,可得,可求AB'的长,由折叠的性质可得AB=AB'=.【详解】解:∵AB′∥ED∴△AB'F∽△DEF∴∴∴AB'=∵将△ABE沿着AE翻折得△AB′E,∴AB=AB'=,故答案为:.【点睛】本题考查了翻折变换,平行四边形的性质,相似三角形的判定和性质,利用相似三角形的性质求线段的长度是本题的关键.18、1【解析】
根据“频数:组距=2且组距为3”可得答案.【详解】根据题意知,该小组的频数为2×3=1.故答案为:1.【点睛】本题考查了频数分布直方图,解题的关键是根据题意得出频数:组距=2.三、解答题(共78分)19、(1)甲城市运送不可回收垃圾到垃圾场吨,到垃圾场吨,乙城市运送不可回收垃圾到垃圾场吨,到垃圾场吨;(2)甲城市运送不可回收垃圾到垃圾场吨,到垃圾场吨;乙城市运送不可回收垃圾到垃圾场吨,到垃圾场吨.【解析】
(1)设出甲城市运往垃圾场的垃圾为吨,从而表示出两个城市运往两个垃圾场的垃圾的吨数,再根据路程计算出总运输量,于是就得到一个总运输量与的函数关系式,根据函数的增减性和自变量的取值范围,确定何时总运输量最小,得出运输方案;(2)利用运输量不低于2600吨,得出自变量的取值范围,再依据函数的增减性做出判断,制定方案.【详解】解:(1)甲城市运送不可回收垃圾到垃圾场吨,总运输量为吨.千米,随增大而增大当取最小,最小由题意可知,解得:当时,运输量最小;甲城市运送不可回收垃圾到垃圾场吨,到垃圾场吨;乙城市运送不可回收垃圾到垃圾场吨,到垃圾场吨(2)由①可知:,又,解得:,此时当时,运输量最小;运输方案最合理甲城市运送不可回收垃圾到垃圾场吨,到垃圾场吨;乙城市运送不可回收垃圾到垃圾场吨,到垃圾场吨【点睛】本题考查一次函数的应用,一元一次不等式组应用等知识,准确的理解数据之间的关系,设合适的未知数,得到总运输量与自变量的函数关系式是解决问题的关键.20、(1)见解析;(2)EF=GH,理由见解析【解析】
(1)由正方形的性质可得AB=DA,∠ABE=90°=∠DAH.又由∠ADO+∠OAD=90°,可证得∠HAO=∠ADO,继而证得△ABE≌△DAH,可得AE=DH;(2)将FE平移到AM处,则AM∥EF,AM=EF,将GH平移到DN处,则DN∥GH,DN=GH.根据(1)的结论得AM=DN,所以EF=GH;【详解】(1)证明:∵四边形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAH.∴∠HAO+∠OAD=90°.∵AE⊥DH,∴∠ADO+∠OAD=90°.∴∠HAO=∠ADO.在△ABE和△DAH中∠BAE=∠HDAAB=AD∠B=∠HAD∴△ABE≌△DAH(ASA),∴AE=DH;(2)解:EF=GH.理由:如图所示:将FE平移到AM处,则AM∥EF,AM=EF.将GH平移到DN处,则DN∥GH,DN=GH.∵EF⊥GH,∴AM⊥DN,根据(1)的结论得AM=DN,所以EF=GH.【点睛】此题考查四边形综合题,解题关键在于证明△ABE≌△DAH,再根据平移的性质求得AM=EF,DN=GH.21、学校需要投入10800元买草坪【解析】
连接CD,在直角三角形ACD中可求得CD的长,由BD、CB、CD的长度关系可得三角形DBC为一直角三角形,BC为斜边;由此看,四边形ABCD由Rt△ACD和Rt△DBC构成,然后求直角三角形的面积之和即可.【详解】解:连接CD,在RtΔACD中,在ΔCBD中,,而即所以∠BDC=90°则=5所以需費用36×300=10800(元).答:学校需要投入10800元买草坪..【点睛】本题考查了勾股定理的应用,通过勾股定理判定三角形直角三角形,是解答本题的关键.22、(1)证明见解析;(2).【解析】
(1)根据两直线平行内错角相等及折叠特性判断;(2)根据已知矩形性质及第一问证得邻边相等判断四边形BFDG是菱形,再根据折叠特性设未知边,构造勾股定理列方程求解.【详解】(1)证明:根据折叠得,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF;(2)∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;∵AB=6,AD=8,∴BD=1.∴OB=BD=2.假设DF=BF=x,∴AF=AD-DF=8-x.∴在直角△ABF中,AB2+AF2=BF2,即62+(8-x)2=x2,解得x=,即BF=,∴,∴FG=2FO=.【点睛】此题考查了四边形综合题,结合矩形的性质、菱形的判定和性质、勾股定理解答,考查了翻折不变性,综合性较强,是一道好题.23、(1);(2)55元【解析】
(1)分情况讨论,利用待定系数法进行求解即可解题,(2)根据收支平衡的含义建立收支之间的等量关系进行求解是解题关键.【详解】解:(1)当40≤x≤58时,设y与x之间的函数关系式为y=kx+b(k≠0),将(40,60),(58,24)代入y=kx+b,得:,解得:,∴当40≤x≤58时,y与x之间的函数关系式为y=2x+140;当理可得,当58<x≤71时,y与x之间的函数关系式为y=﹣x+1.综上所述:y与x之间的函数关系式为.(2)设当天的销售价为x元时,可出现收支平衡.当40≤x≤58时,依题意,得:(x﹣40)(﹣2x+140)=100×3+150,解得:x1=x2=55;当57<x≤71时,依题意,得:(x﹣40)(﹣x+1)=100×3+150,此方程无解.答:当天的销售价为55元时,可出现收支平衡.【点睛】本题考查了用待定系数法求解一次函数,一次函数的实际应用,中等难度,熟悉待定系数法,根据题意建立等量关系是解题关键.24、(1)该班学生读书册数的平均数为册.(2)该班学生读书册数的中位数为册.【解析】
(1)根据平均数=读书册数总数÷读书总人数,求出该班同学读书册数的平均数;(2)将图表中的数据按照从小到大的顺序排列,再根据中位数的概念求解即可.【详解】解:该班学生读书册数的平均数为:册,答:该班学生读书册数的平均数为册.将该
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 销售经理转正工作总结
- 民间借贷代理词(34篇)
- 工作中的心得体会
- 有儿子离婚协议书(34篇)
- 甜品店的创业计划书15篇
- 酒店电气火灾应急预案(3篇)
- 2023年地震数据采集系统资金申请报告
- 茶文化与茶艺鉴赏 教案 项目六 品茶韵-常见茶叶的冲泡与鉴赏
- 2023年防水油漆投资申请报告
- 2024年安防电子项目资金需求报告代可行性研究报告
- GB/T 30595-2024建筑保温用挤塑聚苯板(XPS)系统材料
- 山东济南天桥区2024-2025学年八年级物理第一学期期中考试试题(含答案)
- 《中华人民共和国突发事件应对法》知识培训
- 托班语言夏天课程设计
- 黑龙江省哈尔滨市第一二四中学2024-2025学年七年级上学期期中考试数学试卷(含答案)
- 别墅改造项目合同书
- 【招商银行】跨境电商行业深度报告:中国跨境电商产业升级“四小龙”吹响出海集结号
- 期中测试卷(1-4单元)(试题)-2024-2025学年六年级上册数学北师大版
- 期中测试卷-2024-2025学年统编版语文二年级上册
- 2024年软件资格考试系统集成项目管理工程师(中级)(基础知识、应用技术)合卷试卷及解答参考
- 学年深圳市南山区初中八年级的上数学期末试卷试题包括答案
评论
0/150
提交评论