![2023年广西北海市、南宁市、钦州市、防城港市数学八下期末达标检测试题含解析_第1页](http://file4.renrendoc.com/view/0c7afa3b8f5a3bc6d294bc0fb270a349/0c7afa3b8f5a3bc6d294bc0fb270a3491.gif)
![2023年广西北海市、南宁市、钦州市、防城港市数学八下期末达标检测试题含解析_第2页](http://file4.renrendoc.com/view/0c7afa3b8f5a3bc6d294bc0fb270a349/0c7afa3b8f5a3bc6d294bc0fb270a3492.gif)
![2023年广西北海市、南宁市、钦州市、防城港市数学八下期末达标检测试题含解析_第3页](http://file4.renrendoc.com/view/0c7afa3b8f5a3bc6d294bc0fb270a349/0c7afa3b8f5a3bc6d294bc0fb270a3493.gif)
![2023年广西北海市、南宁市、钦州市、防城港市数学八下期末达标检测试题含解析_第4页](http://file4.renrendoc.com/view/0c7afa3b8f5a3bc6d294bc0fb270a349/0c7afa3b8f5a3bc6d294bc0fb270a3494.gif)
![2023年广西北海市、南宁市、钦州市、防城港市数学八下期末达标检测试题含解析_第5页](http://file4.renrendoc.com/view/0c7afa3b8f5a3bc6d294bc0fb270a349/0c7afa3b8f5a3bc6d294bc0fb270a3495.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.在平面直角坐标系内,已知点A的坐标为(-6,0),直线l:y=kx+b不经过第四象限,且与x轴的夹角为30°,点P为直线l上的一个动点,若点P到点A的最短距离是2,则b的值为()A.
或 B. C.2 D.2或102.正方形面积为,则对角线的长为()A.6 B. C.9 D.3.已知反比例函数y=1-2mx的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则mA.m<0 B.m>0 C.m<12 D.m>4.如图所示,在菱形ABCD中,∠BAD=120°.已知ΔABC的周长是15,则菱形ABCD的周长是()A.25 B.20 C.15 D.105.矩形ABCD的对角线AC、BD交于点O,下列结论不成立的是()A.AC=BD B.OA=OB C.OC=CD D.∠BCD=90°6.要使二次根式有意义,字母的取值范围是()A.x≥ B.x≤ C.x> D.x<7.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.3环,方差分别为S甲2=0.1.S乙2=0.62,S丙2=0.50,S丁2=0.45,则成绩最稳定的是()A.甲 B.乙 C.丙 D.丁8.若n是实数,且n>0,则一次函数y=﹣nx+n的图象经过的象限是()A.一、二、三 B.一、三、四 C.一、二、四 D.二、三、四9.用配方法解方程,下列配方正确的是()A. B. C. D.10.某商品降价后欲恢复原价,则提价的百分数为().A. B. C. D.11.如果分式有意义,则x的取值范围是()A.x=﹣3 B.x>﹣3 C.x≠﹣3 D.x<﹣312.如图以正方形的一边为边向下作等边三角形,则的度数是()A.30° B.25° C.20° D.15°二、填空题(每题4分,共24分)13.如图,等腰直角△ABC中,∠BAC=90°,BC=6,过点C作CD⊥BC,CD=2,连接BD,过点C作CE⊥BD,垂足为E,连接AE,则AE长为_____.14.一次函数,若y随x的增大而增大,则的取值范围是.15.中国人民银行近期下发通知,决定自2019年4月30日停止兑换第四套人民币中菊花1角硬币.如图所示,则该硬币边缘镌刻的正多边形的外角的度数为_______.16.已知平面直角坐标系中A.B两点坐标如图,若PQ是一条在x轴上活动的线段,且PQ=1,求当BP+PQ+QA最小时,点Q的坐标___.17.如图,在直角坐标系中,正方形OABC顶点B的坐标为(6,6),直线CD交直线OA于点D,直线OE交线段AB于点E,且CD⊥OE,垂足为点F,若图中阴影部分的面积是正方形OABC的面积的,则△OFC的周长为______.18.分式与的最简公分母是__________.三、解答题(共78分)19.(8分)某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务,求原计划每小时抢修道路多少米?20.(8分)某花卉种植基地准备围建一个面积为100平方米的矩形苗圃园园种植玫瑰花,其中一边靠墙,另外三边用29米长的篱笆围成.已知墙长为18米,为方便进入,在墙的对面留出1米宽的门(如图所示),求这个苗圃园垂直于墙的一边长为多少米?21.(8分)解不等式组:.22.(10分)(问题原型)如图,在中,对角线的垂直平分线交于点,交于点,交于点.求证:四边形是菱形.(小海的证法)证明:是的垂直平分线,,(第一步),(第二步).(第三步)四边形是平行四边形.(第四步)四边形是菱形.(第五步)(老师评析)小海利用对角线互相平分证明了四边形是平行四边形,再利用对角线互相垂直证明它是菱形,可惜有一步错了.(挑错改错)(1)小海的证明过程在第________步上开始出现了错误.(2)请你根据小海的证题思路写出此题的正确解答过程,23.(10分)如图,是矩形对角线的交点,,.(1)求证:四边形是菱形;(2)若,,求矩形的面积.24.(10分)如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为1.(1)当m=1,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.25.(12分)如图,四边形和四边形都是平行四边形.求证:四边形是平行四边形.26.如图①,C地位于A、B两地之间,甲步行直接从C地前往B地,乙骑自行车由C地先回A地,再从A地前往B地(在A地停留时间忽略不计),已知两人同时出发且速度不变,乙的速度是甲的2.5倍,设出发xmin后,甲、乙两人离C地的距离为y1m、y2m,图②中线段OM表示y1与x的函数图象.(1)甲的速度为______m/min.乙的速度为______m/min.(2)在图②中画出y2与x的函数图象,并求出乙从A地前往B地时y2与x的函数关系式.(3)求出甲、乙两人相遇的时间.(4)请你重新设计题干中乙骑车的条件,使甲、乙两人恰好同时到达B地.要求:①不改变甲的任何条件.②乙的骑行路线仍然为从C地到A地再到B地.③简要说明理由.④写出一种方案即可.
参考答案一、选择题(每题4分,共48分)1、A【解析】
直线l:y=kx+b不经过第四象限,可能过一、二、三象限,与x轴的夹角为30°,又点A的坐标为(-6,0),因此两种情况,分别画出每种情况的图形,结合图形,利用已学知识进行解答.【详解】解:如图:分两种情况:(1)在Rt△ABP1中,AP1=2,∠ABP1=30°,∴AB=2AP1=4,∴OB=OA-AB=6-4=2,在Rt△BCO中,∠CBO=30°,∴OC=tan30°×OB=,即:b=;(2)同理可求得AD=4,OD=OA+AD=10,在Rt△DOE中,∠EDO=30°,∴OE=tan30°×OD=,即:b=;故选:A.【点睛】考查一次函数的图象和性质、直角三角形的边角关系等知识,分类讨论得出答案,注意分类的原则既不重复,又不能遗漏,可根据具体问题合理灵活地进行分类.2、B【解析】
根据对角线互相垂直的四边形的面积等于对角线乘积的一半,且正方形对角线相等,列方程解答即可.【详解】设对角线长是x.则有x2=36,解得:x=6.故选B.【点睛】本题考查了正方形的性质,注意结论:对角线互相垂直的四边形的面积等于对角线乘积的一半.此题也可首先根据面积求得正方形的边长,再根据勾股定理进行求解.3、C【解析】
试题分析:根据反比例函数图象上点的坐标特征得到图象只能在一、三象限,故,则1-2m>0,∴m>12故选C.考点:反比例函数图象上点的坐标特征.4、B【解析】
由于四边形ABCD是菱形,AC是对角线,根据菱形对角线性质可求∠BAC=60°,而AB=BC=AC,易证△BAC是等边三角形,结合△ABC的周长是15,从而可求AB=BC=5,那么就可求菱形的周长.【详解】∵四边形ABCD是菱形,AC是对角线,∴AB=BC=CD=AD,∠BAC=∠CAD=∠BAD,∴∠BAC=60°,∴△ABC是等边三角形,∵△ABC的周长是15,∴AB=BC=5,∴菱形ABCD的周长是1.故选B.5、C【解析】
根据矩形的性质可以直接判断.【详解】∵四边形ABCD是矩形∴AC=BD,OA=OB=OC=OD,∠BCD=90°∴选项A,B,D成立,故选C.【点睛】本题考查了矩形的性质,熟练运用矩形的性质是本题的关键.6、B【解析】
二次根式的被开方数应为非负数,列不等式求解.【详解】由题意得:1-2x≥0,解得x≤,故选B.【点睛】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.7、D【解析】
根据方差越大,则平均值的离散程度越大,波动大;反之,则它与其平均值的离散程度越小,波动小,稳定性越好,比较方差大小即可得出答案.【详解】∵S甲2=0.1.S乙2=0.62,S丙2=0.50,S丁2=0.45,∴S丁2<S丙2<S甲2<S乙2,∴成绩最稳定的是丁.故选D.【点睛】本题考查的知识点是方差.熟练应用方差的性质是解题的关键.8、C【解析】
根据题意,在一次函数y=﹣nx+n中,﹣n<0,n>0,结合函数图象的性质可得答案.【详解】解:根据题意,在一次函数y=﹣nx+n中,﹣n<0,n>0,则函数的图象过一、二、四象限,故选:C.【点睛】本题考查一次函数的图象的性质,应该识记一次函数y=kx+b在k、b符号不同情况下所在的象限.9、A【解析】
按照配方法的步骤和完全平方公式即可得出答案.【详解】即故选:A.【点睛】本题主要考查配方法,掌握配方法和完全平方公式是解题的关键.10、C【解析】解:设原价为元,提价百分数为,则,解得,故选.11、C【解析】
根据分母不等于零时分式有意义,可得答案.【详解】由题意,得:x+1≠0,解得:x≠﹣1.故选C.【点睛】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.12、D【解析】
由正方形的性质、等边三角形的性质可得,,再根据,得到,故利用即可求解.【详解】解:四边形为正方形,为等边三角形,∴,∴.∵,∴.∴.故选D.【点睛】本题考查了正方形的性质及等边三角形的性质;求得并利用其性质做题是解答本题的关键.二、填空题(每题4分,共24分)13、【解析】分析:根据旋转的性质得到△ABF≌△ACE,进而得出△AEF为等腰直角三角形,根据两角对应相等的两三角形相似的判定可得△BCD∽△BEC,然后根据对应边成比例可得,然后根据勾股定理即可求解.详解:把AE逆时针旋转90°,使AE=AF交BD于F,根据旋转的性质可得△ABF≌△ACE,即BF=CE,∴△AEF是等腰直角三角形∵CD⊥BC,CE⊥BD∴∠BCD=∠CEB=90°∵∠DBC=∠CBD,∴△BCD∽△BEC∴∵BC=6,CD=2∴BD==即CE=∴DE=即BE=∴EF=——=∴AE=AF=故答案为:.点睛:此题主要考查了旋转变化的性质,等腰三角形的性质,相似三角形的判定与性质,勾股定理等知识,此题综合性较强,难度较大,解题的关键是准确作出辅助线,注意掌握数形结合思想与方程思想的应用.14、.【解析】一次函数的图象有两种情况:①当时,函数的值随x的值增大而增大;②当时,函数的值随x的值增大而减小.由题意得,函数的y随x的增大而增大,.15、45°【解析】
根据正多边形的外角度数等于外角和除以边数可得.【详解】∵硬币边缘镌刻的正多边形是正八边形,∴它的外角的度数等于360÷8=45°.故答案为45°.【点睛】本题主要考查了多边形的外角和定理,任何一个多边形的外角和都是360°.16、(,0);【解析】
如图把点向右平移1个单位得到,作点关于轴的对称点,连接,与轴的交点即为点,此时的值最小,求出直线的解析式,即可解决问题.【详解】如图把点向右平移1个单位得到,作点关于轴的对称点,连接,与轴的交点即为点,此时的值最小,设最小的解析式为,则有,解得,直线的解析式为,令,得到,.故答案为:.【点睛】本题考查轴对称最短问题、坐标与图形的性质、一次函数的应用等知识,解题的关键是学会利用对称解决最短问题,学会构建一次函数解决交点问题,属于中考常考题型.17、3+2【解析】
证明△COD≌△OAE,推理出△OCF面积=四边形FDAE面积=2÷2=3,设OF=x,FC=y,则xy=2,x2+y2=1,所以(x+y)2=x2+y2+2xy=30,从而可得x+y的值,则△OFC周长可求.【详解】∵正方形OABC顶点B的坐标为(3,3),∴正方形的面积为1.所以阴影部分面积为1×=2.∵四边形AOCB是正方形,∴∠AOC=90°,即∠COE+∠AOE=90°,又∵CD⊥OE,∴∠CFO=90°∴∠OCF+∠COF=90°,∴∠OCD=∠AOE在△COD和△OAE中∴△COD≌△OAE(AAS).∴△COD面积=△OAE面积.∴△OCF面积=四边形FDAE面积=2÷2=3.设OF=x,FC=y,则xy=2,x2+y2=1,所以(x+y)2=x2+y2+2xy=30.所以x+y=2.所以△OFC的周长为3+2.故答案为3+2.【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质,解题的关键是推理出两个阴影部分面积相等,得到△OFC两直角边的平方和、乘积,运用完全平方公式求解出OF+FC值.18、【解析】
分式的最简公分母通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,即可得解.【详解】由题意,得其最简公分母是,故答案为:.【点睛】此题主要考查分式的最简公分母,熟练掌握,即可解题.三、解答题(共78分)19、280米【解析】
设原计划每小时抢修道路x米,根据一共用10小时完成任务列出方程进行求解即可.【详解】设原计划每小时抢修道路x米,根据题意得:+=10,解得:x=280,经检验:x=280是原方程的解,答:原计划每小时抢修道路280米.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.注意分式方程要检验.20、10米【解析】
设这个苗圃园垂直于墙的一边长为x米,则平行于墙的一边为(29+1-2x)米,根据此矩形苗圃园面积为100平方米列一元二次方程求解可得答案.【详解】解:设这个苗圃园垂直于墙的一边长为x米,则平行于墙的一边为(29+1-2x)米,由题意得:x(30-2x)=100,-2x+30x-100=0,x-15x+50=0(x-5)(x-10)=0,或,当x=5时,则平行于墙的一边为20米>18米,不符合题意,取x=10,答:垂直于墙的一边长为10米.【点睛】本题主要考查一元二次方程的应用,根据已知条件列出方程式解题的关键.21、2<x≤1【解析】
分别计算出各不等式的解集,再求出其公共解集即可.【详解】解:解①得:x>2解②得:x≤1不等式组的解集是2<x≤1.【点睛】本题考查的是解一元一次不等式组,解答此类题目要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.22、(1)二;(2)见解析.【解析】
(1)由垂直平分线性质可知,AC和EF并不是互相平分的,EF垂直平分AC,但AC并不平分EF,需要通过证明才可以得出,故第2步出现了错误;(2))根据平行四边形性质求出AD∥BC,推出,证,推出,可得四边形是平行四边形,推出菱形.【详解】(1)二(2)四边形是平行四边形,..是的垂直平分线,.在与中,..四边形是平行四边形..四边形是菱形.【点睛】本题考查菱形的判定,以及平行四边形的性质,关键是掌握对角线互相垂直的平行四边形是菱形23、(1)见解析;(2)【解析】
(1)先证明四边形OCED是平行四边形,再证明OD=OC,根据一组邻边相等的平行四边形是菱形进行判定;
(2)结合题意,根据∠AOD=120°得到为等边三角形,推导出,再结合题意得到AC=6,利用勾股定理求出AD长,矩形面积=AD×CD.【详解】(1),,四边形是平行四边形.是矩形的对角线的交点,,平行四边形是菱形;(2),,为等边三角形,故.,,,,故矩形.【点睛】本题考查平行四边形的性质和判定、菱形的性质和判定以及勾股定理,解题的关键是掌握平行四边形的性质和判定、菱形的性质和判定以及勾股定理.24、(1)①;②四边形是菱形,理由见解析;(2)四边形能是正方形,理由见解析,m+n=32.【解析】
(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;
②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;
(2)先确定出B(1,),D(1,),进而求出点P的坐标,再求出A,C坐标,最后用AC=BD,即可得出结论.【详解】(1)①如图1,,反比例函数为,当时,,,当时,,,,设直线的解析式为,,,直线的解析式为;②四边形是菱形,理由如下:如图2,由①知,,轴,,点是线段的中点,,当时,由得,,由得,,,,,,四边形为平行四边形,,四边形是菱形;(2)四边形能是正方形,理由:当四边形是正方形,记,的交点为,,当时,,,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国工商银行补偿贸易借款合同(6篇)
- 2024酒店客房领班年终总结(7篇)
- 聘用合同模板(30篇)
- 2024年学校开展防灾减灾工作总结(9篇)
- 2024-2025学年第2课西方国家古代和近代政治制度的演变-勤径学升高中历史选择性必修1同步练测(统编版2019)
- 2025年专利申请出售协议
- 2025年化工市场代理购销居间协议书
- 2025年医疗机构内科承包业务协议
- 2025年授权代理合作合同标准版本
- 2025年电子线圈设备项目申请报告模板
- 火力发电厂总经理岗位规范
- 春节节后施工复工安全培训
- GB/T 3478.1-1995圆柱直齿渐开线花键模数基本齿廓公差
- GB/T 1346-2001水泥标准稠度用水量、凝结时间、安定性检验方法
- FZ/T 25001-2012工业用毛毡
- 中国工运史知识竞答附答案
- 快递运营实务项目2快递网点业务管理课件
- 瑞幸咖啡SWOT分析
- DL∕T 1867-2018 电力需求响应信息交换规范
- “大水利”概念及其意义
- 小学生品德发展水平指标评价体系(小学)
评论
0/150
提交评论