2023年江苏省宿迁市沭阳广宇学校数学八下期末联考模拟试题含解析_第1页
2023年江苏省宿迁市沭阳广宇学校数学八下期末联考模拟试题含解析_第2页
2023年江苏省宿迁市沭阳广宇学校数学八下期末联考模拟试题含解析_第3页
2023年江苏省宿迁市沭阳广宇学校数学八下期末联考模拟试题含解析_第4页
2023年江苏省宿迁市沭阳广宇学校数学八下期末联考模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列方程中,有实数根的方程是()A.x4+16=0 B.x2+2x+3=0 C. D.2.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(-1,-1),B(1,2),平移线段AB得到线段A’B’(点A与A’对应),已知A’的坐标为(3,-1),则点B’的坐标为(

)A.(4,2) B.(5,2) C.(6,2) D.(5,3)3.下列各组数中不能作为直角三角形的三边长的是()A.3,4,5 B.13,14,15 C.5,12,13 D.15,8,174.矩形一个角的平分线分矩形一边为2cm和3cm两部分,则这个矩形的面积为()A.10cm2 B.15cm2 C.12cm2 D.10cm2或15cm25.如图,在正方形ABCD中,BD=2,∠DCE是正方形ABCD的外角,P是∠DCE的角平分线CF上任意一点,则△PBD的面积等于()A.1 B.1.5 C.2 D.2.56.如图是某件商晶四天内的进价与售价的折线统计图.那么售出每件这种商品利润最大的是()A.第一天 B.第二天 C.第三天 D.第四天7.如图,在长方形中,点为中点,将沿翻折至,若,,则与之间的数量关系为()A. B. C. D.8.如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF=()A.4 B.5 C. D.69.下列各组数是勾股数的是()A.2,3,4B.4,5,6C.3.6,4.8,6D.9,40,4110.慢车和快车先后从甲地出发沿直线道路匀速驶向乙地,快车比慢车晚出发0.5小时,行驶一段时间后,快车途中休息,休息后继续按原速行驶,到达乙地后停止.慢车和快车离甲地的距离y(千米)与慢车行驶时间x(小时)之间的函数关系如图所示.有以下说法:①快车速度是120千米/小时;②慢车到达乙地比快车到达乙地晚了0.5小时;③点C坐标(,100);④线段BC对应的函数表达式为y=120x﹣60(0.5≤x≤);其中正确的个数有()A.1 B.2 C.3 D.4二、填空题(每小题3分,共24分)11.如图,平行四边形中,点为边上一点,和交于点,已知的面积等于6,的面积等于4,则四边形的面积等于__________.12.如图,1角硬币边缘镌刻的是正九边形,则这个正九边形每个内角的度数是________.13.已知关于的方程,如果设,那么原方程化为关于的方程是____.14.在甲、乙两名同学中选拔一人参加校园“中华诗词”大赛,在相同的测试条件下,两人5次测试成绩分别是:甲:79,86,82,85,83;乙:88,79,90,81,72;数据波动较小的一同学是_____.15.对于一次函数y=(a+2)x+1,若y随x的增大而增大,则a的取值范围________16.若直角三角形的两直角边长为a、b,且满足,则该直角三角形的斜边长为.17.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B'位置,A点落在A'位置,若AC⊥A'B',则∠BAC的度数是__.

18.若二次根式有意义,则实数m的取值范围是_________.三、解答题(共66分)19.(10分)某商场销售A,B两款书包,己知A,B两款书包的进货价格分别为每个30元、50元,商场用3600元的资金购进A,B两款书包共100个.(1)求A,B两款书包分别购进多少个?(2)市场调查发现,B款书包每天的销售量y(个)与销售单价x(元)有如下关系:y=-x+90(60≤x≤90).设B款书包每天的销售利润为w元,当B款书包的销售单价为多少元时,商场每天B款书包的销售利润最大?最大利润是多少元?20.(6分)在甲村至乙村的公路上有一块山地正在开发,现有一处需要爆破.已知点与公路上的停靠站的距离为300米,与公路上的另一停靠站的距离为400米,且,如图所示为了安全起见,爆破点周围半径250米范围内不得进入,问在进行爆破时,公路段是否因为有危险而需要暂时封锁?请说明理由.21.(6分)世界上大部分国家都使用摄氏温度(℃),但美国,英国等国家的天气预报都使用华氏温度(℉),两种计量之间有如下对应:摄氏温度(℃)…010…华氏温度(℉)…3250…已知华氏温度y(℉)是摄氏温度x(℃)的一次函数.求该一次函数的解析式;当华氏温度14℉时,求其所对应的摄氏温度.22.(8分)某电冰箱厂每个月的产量都比上个月増长的百分数相同.己知该厂今年月份的电冰箱产量为万台,月份比月份多生产了万台.(1)求该厂今年产量的月平均増长率为多少?(2)预计月份的产量为多少万台?23.(8分)某服装加工厂计划加工4000套运动服,在加工完1600套后,采用了新技术,工作效率比原计划提高,结果共用了18天完成全部任务.求原计划每天加工多少套运动服.24.(8分)定义:点关于原点的对称点为,以为边作等边,则称点为的“等边对称点”;(1)若,求点的“等边对称点”的坐标;(2)若点是双曲线上动点,当点的“等边对称点”点在第四象限时,①如图(1),请问点是否也会在某一函数图象上运动?如果是,请求出此函数的解析式;如果不是,请说明理由;②如图(2),已知点,,点是线段上的动点,点在轴上,若以、、、这四个点为顶点的四边形是平行四边形时,求点的纵坐标的取值范围.25.(10分)如图,在ABCD中,AD∥BC,AC=BC=4,∠D=90°,M,N分别是AB、DC的中点,过B作BE⊥AC交射线AD于点E,BE与AC交于点F.(1)当∠ACB=30°时,求MN的长:(2)设线段CD=x,四边形ABCD的面积为y,求y与x的函数关系式及其定义域;(3)联结CE,当CE=AB时,求四边形ABCE的面积.26.(10分)某校“六一”活动购买了一批A,B两种型号跳绳,其中A型号跳绳的单价比B型号跳绳的单价少9元,已知该校用2600元购买A型号跳绳的条数与用3500元购买B型号跳绳的条数相等.(1)求该校购买的A,B两种型号跳绳的单价各是多少元?(2)若两种跳绳共购买了200条,且购买的总费用不超过6300元,求A型号跳绳至少购买多少条?

参考答案一、选择题(每小题3分,共30分)1、C【解析】

利用在实数范围内,一个数的偶数次幂不能为负数对A进行判断;利用判别式的意义对B进行判断;利用分子为0且分母不为0对C进行判断;利用非负数的性质对D进行判断.【详解】解:A、因为x4=﹣16<0,所以原方程没有实数解,所以A选项错误;B、因为△=22﹣4×3=﹣8<0,所以原方程没有实数解,所以B选项错误;C、x2﹣4=0且x﹣2≠0,解得x=﹣2,所以C选项正确;D、由于x=0且x﹣1=0,所以原方程无解,所以D选项错误.故选:C.【点睛】此题考查判别式的意义,分式有意义的条件,二次根式,解题关键在于掌握运算法则2、B【解析】试题解析:根据A点的坐标及对应点的坐标可得线段AB向右平移4个单位,然后可得B′点的坐标.∵A(﹣1,﹣1)平移后得到点A′的坐标为(3,﹣1),∴向右平移4个单位,∴B(1,2)的对应点坐标为(1+4,2),即(5,2).故选B.3、B【解析】

分别把选项中的三边平方后,根据勾股定理逆定理即可判断能够构成直角三角形.【详解】解:A选项中,,∴能构成直角三角形;B选项中,,∴不能构成直角三角形;C选项中,,∴能构成直角三角形;D选项中,,∴能构成直角三角形;故选B.【点睛】本题主要考查构成直角三角形的条件,掌握勾股定理的逆定理是解题的关键.4、D【解析】

根据矩形性质得出AB=CD,AD=BC,AD∥BC,由平行线的性质,以及角平分线的定义,即可证得∠ABE=∠AEB,利用等边对等角可以证得AB=AE,然后分AE=1cm,DE=3cm和AE=3cm,DE=1cm两种情况即可求得矩形的边长,从而求解.【详解】解:∵四边形ABCD是矩形,

∴AB=CD,AD=BC,AD∥BC,

∴∠AEB=∠CBE,

∵BE平分∠ABC,

∴∠ABE=∠CBE,

∴∠AEB=∠ABE,

∴AB=AE,当AE=1cm,DE=3cm时,AD=BC=5cm,AB=CD=AE=1cm.

∴矩形ABCD的面积是:1×5=10cm1;

当AE=3cm,DE=1cm时,AD=BC=5cm,AB=CD=AE=3cm,

∴矩形ABCD的面积是:5×3=15cm1.

故矩形的面积是:10cm1或15cm1.

故选:D.【点睛】本题考查矩形的性质以及等腰三角形的判定与性质.注意掌握数形结合思想与分类讨论思想的应用.5、A【解析】由于BD∥CF,以BD为底边,以BD边对应的高为边长计算三角形的面积即可.解:△PBD的面积等于

×2×1=1.故选A.“点睛”考查了三角形面积公式以及代入数值求解的能力,注意平行线间三角形同底等高的情况.6、B【解析】

根据利润=售价-进价和图象中给出的信息即可得到结论.【详解】解:由图象中的信息可知,利润=售价-进价,利润最大的天数是第二天.故选:B.【点睛】本题考查折线统计图,有理数大小的比较,正确的把握图象中的信息,理解利润=售价-进价是解题的关键.7、D【解析】

直接利用平行线的性质结合翻折变换的性质得出△ADM≌△BCM(SAS),进而利用直角三角形的性质得出答案.【详解】∵M为CD中点,∴DM=CM,在△ADM和△BCM中∵,∴△ADM≌△BCM(SAS),∴∠AMD=∠BMC,AM=BM∴∠MAB=∠MBA∵将点C绕着BM翻折到点E处,∴∠EBM=∠CBM,∠BME=∠BMC=∠AMD∴∠DME=∠AMB∴∠EBM=∠CBM=(90°-β)∴∠MBA=(90°-β)+β=(90°+β)∴∠MAB=∠MBA=(90°+β)∴∠DME=∠AMB=180°-∠MAB-∠MBA=90°-β∵长方形ABCD中,∴CD∥AB∴∠DMA=∠MAB=(90°+β)∴∠DME+∠AME=∠ABE+∠MBE∵∠AME=α,∠ABE=β,∴90°-β+α=β+(90°-β)∴3β-2α=90°故选D.【点睛】本题考查的知识点是平行线的性质,解题关键是利用全等三角形对应角相等即可求解.8、B【解析】

取CE的中点G,连接FG.依据旋转的性质CE=BC=4,CD=AC=6,则AE=2,由G是CE的中点可求得AG=4,然后利用三角形的中位线定理可得到FG=3,最后在Rt△AFG中依据勾股定理求解即可.【详解】过点作于点.由图形旋转的性质可知,,,所以.因为,且,所以.又因为点为中点,所以为的中位线,点为中点,则,,故.在中,.故选B.9、D【解析】利用勾股数的定义进行判断.A选项,42≠22+32,故2,3,4不是勾股数;B选项,62≠42+52,故4,5,6不是勾股数;C选项,3.6,4.8不是正整数,故不是勾股数;D选项,三数均为正整数,且412=92+402,故9,40,41是勾股数.故选D.10、D【解析】

根据题意和函数图象中的数据可以判断各个小题中的结论是否成立,本题得以解决.【详解】解:由图可得,①快车的速度为:(400﹣280)÷(4.5﹣3.5)=120千米/小时,故①正确,②慢车的速度为:280÷3.5=80千米/小时,慢车到达乙地比快车到达乙地晚了:400÷80﹣4.5=0.5小时,故②正确,③点C的纵坐标是:400﹣120×(4.5﹣2)=100,横坐标是:0.5+100÷120=,即点C的坐标为(,100),故③正确,④设线段BC对应的函数表达式为y=kx+b,∵点B(0.5,0),点C(,100),∴,得,即线段BC对应的函数表达式为y=120x﹣60(0.5≤x≤),故④正确,故选:D.【点睛】本题主要考查一次函数的应用,能够根据题意结合图象获取有效信息是解题的关键.二、填空题(每小题3分,共24分)11、11【解析】

由△ABF的面积等于6,△BEF的面积等于4,可得EF:AF=2:3,进而证明△ADF∽△EBF,根据相似三角形的性质可得,继而求出S△ABD=15,再证明△BCD≌△DAB,从而得S△BCD=S△DAB=15,进而利用S四边形CDFE=S△BCD-S△BEF即可求得答案.【详解】∵△ABF的面积等于6,△BEF的面积等于4,∴EF:AF=4:6=2:3,∵四边形ABCD是平行四边形,∴AD//BC,∴△ADF∽△EBF,∴,∵S△BEF=4,∴S△ADF=9,∴S△ABD=S△ABF+S△AFD=6+9=15,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵BD是公共边,∴△BCD≌△DAB,∴S△BCD=S△DAB=15,∴S四边形CDFE=S△BCD-S△BEF=15-4=11,故答案为11.【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟练掌握并灵活运用相关知识是解题的关键.12、140°【解析】

先根据多边形内角和定理:求出该多边形的内角和,再求出每一个内角的度数.【详解】解:该正九边形内角和=180°×(9-2)=1260°,

则每个内角的度数=.

故答案为:140°.【点睛】本题主要考查了多边形的内角和定理:180°•(n-2),比较简单,解答本题的关键是直接根据内角和公式计算可得内角和.13、.【解析】

先根据得到,再代入原方程进行换元即可.【详解】由,可得∴原方程化为3y+故答案为:3y+.【点睛】本题主要考查了换元法解分式方程,换元的实质是转化,将复杂问题简单化.常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,用一个字母来代替它可以简化问题,有时候要通过变形才能换元.14、答案为甲【解析】

方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:=83(分),=82(分);经计算知S甲2=6,S乙2=1.S甲2<S乙2,∴甲的平均成绩高于乙,且甲的成绩更稳定,故答案为甲【点睛】本题主要考查平均数、方差等知识,解题的关键是记住:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.15、a>-1【解析】

一次函数y=kx+b,当k>0时,y随x的增大而增大.据此列式解答即可.【详解】解:根据一次函数的性质,对于y=(a+1)x+1,

当a+1>0时,即a>-1时,y随x的增大而增大.

故答案是a>-1.【点睛】本题考查了一次函数的性质.一次函数y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.16、1.【解析】∵,∴=0,b-2=0,解得a=3,b=2.∵直角三角形的两直角边长为a、b,∴该直角三角形的斜边长=.17、70°【解析】

由旋转的角度易得∠ACA′=20°,若AC⊥A'B',则∠A′、∠ACA′互余,由此求得∠ACA′的度数,由于旋转过程并不改变角的度数,因此∠BAC=∠A′,即可得解.【详解】解:由题意知:∠ACA′=20°;

若AC⊥A'B',则∠A′+∠ACA′=90°,

得:∠A′=90°-20°=70°;

由旋转的性质知:∠BAC=∠A′=70°;

故∠BAC的度数是70°.故答案是:70°【点睛】本题考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.18、m≤3【解析】

由二次根式的定义可得被开方数是非负数,即可得答案.【详解】解:由题意得:解得:,故答案为:.【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.三、解答题(共66分)19、(1)A,B两款书包分别购进70和30个;(2)B款书包的销售单价为70元时B款书包的销售利润最大,最大利润是400元【解析】

(1)此题的等量关系为:购进A款书包的数量+购进B款书包的数量=100;购进A款书包的数量×进价+购进B款书包的数量×进价=3600,设未知数,列方程求解即可.

(2)根据B款书包每天的销售利润=(B款书包的售价-B款书包的进价)×销售量y,列出w与x的函数解析式,再利用二次函数的性质,即可解答.【详解】(1)解:设购进A款书包x个,则B款为(100−x)个,由题意得:30x+50(100−x)=3600,解之:x=70,∴100-x=100-70=30答:A,B两款书包分别购进70和30个.(2)解:由题意得:w=y(x−50)=−(x−50)(x−90)=-x2+140x-4500,∵−1<0,故w有最大值,函数的对称轴为:x=70,而60⩽x⩽90,故:当x=70时,w有最大值为400,答:B款书包的销售单价为70元时B款书包的销售利润最大,最大利润是400元.【点睛】考核知识点:二次函数y=a(x-h)2+k的性质,二次函数的实际应用-销售问题.20、公路段需要暂时封锁.理由见解析.【解析】

如图,本题需要判断点C到AB的距离是否小于250米,如果小于则有危险,大于则没有危险.因此过C作CD⊥AB于D,然后根据勾股定理在直角三角形ABC中即可求出AB的长度,然后利用三角形的公式即可求出CD,然后和250米比较大小即可判断需要暂时封锁.【详解】公路段需要暂时封锁.理由如下:如图,过点作于点.因为米,米,,所以由勾股定理知,即米.因为,所以(米).由于240米<250米,故有危险,因此公路段需要暂时封锁.【点睛】本题考查运用勾股定理,掌握勾股定理的运用是解题的关键.21、(1)y=1.8x+1;(2)华氏温度14℉所对应的摄氏温度是-2℃.【解析】分析:(1)设y=kx+b(k≠0),利用图中的两对数,用待定系数法求解即可;

(2)把y=14代入(1)中求得的函数关系式求出x的值即可.详解:(1)设一次函数表达式为y=kx+b(k≠0).由题意,得,解得.∴一次函数的表达式为y=1.8x+1.(2)当y=14时,代入得14=1.8x+1,解得x=-2.∴华氏温度14℉所对应的摄氏温度是-2℃.点睛:本题考查了一次函数的应用,熟练掌握待定系数法是解答本题的关键.利用待定系数法求函数解析式的一般步骤:①先设出函数解析式的一般形式;②将已知点的坐标代入所设的解析式,得到关于待定系数的方程或方程组;③解方程或方程组,求出待定系数的值,进而写出函数解析式.22、(1)20%;(2)8.64万台.【解析】试题分析:(1)设每个月的月平均增长率为x,则5月的产量为5(1+x)台,6月份的产量为5(1+x)2台,由此即可根据6月份比5月份多生产1.2万台可得方程:5(1+x)2﹣5(1+x)=1.2,解方程即可得到所求答案;(2)根据(1)中所得结果即可按7月份的产量为5(1+x)3,即可计算出7月份的产量了.试题解析:(1)设该厂今年产量的月平均增长率是x,根据题意得:5(1+x)2﹣5(1+x)=1.2解得:x=﹣1.2(舍去),x=0.2=20%.答:该厂今年的产量的月增长率为20%;(2)7月份的产量为:5(1+20%)3=8.64(万台).答:预计7月份的产量为8.64万台.23、原计划每天加工2套运动服.【解析】

根据题意:“共用了1天完成全部任务”;等量关系为:采用新技术前用的时间+采用新技术后所用的时间=1.【详解】设原计划每天加工x套运动服.根据题意,得.解得:x=2.经检验,x=2是原方程的解,且符合题意.答:原计划每天加工2套运动服.【点睛】此题考查分式方程在实际问题中的应用.24、(1)或;(2)①;②或【解析】

(1)根据P点坐标得出P'的坐标,可求PP'=4;设C(m,n),有PC=P'C=24,通过解方程即可得出结论;(2)①设P(c,),得出P'的坐标,利用连点间的距离公式可求的长,设C(s,t),有,然后通过解方程可得,再根据消元c即可得xy=-6;②分AG为平行四边形的边和AG为平行四边形的对角线两种情况进行分类讨论.【详解】解:(1)∵P(1,),

∴P'(-1,-),

∴PP'=4,

设C(m,n),

∴等边△PP′C,

∴PC=P'C=4,解得n=或-,

∴m=-1或m=1.

如图1,观察点C位于第四象限,则C(,-1).即点P的“等边对称点”的坐标是(,-1).(2)①设,∴,∴,设,,∴,∴,∴,∴,∴或,∴点在第四象限,,∴,令,∴,即;②已知,,则直线为,设点,设点,,即,,,构成平行四边形,点在线段上,;当为对角线时,平行四边形对角坐标之和相等;,,,即;当为边时,平行四边形,,,,即;当为边时,平行四边形,,,,而点在第三象限,,即此时点不存在;综上,或.【点睛】本题考查反比例函数的图象及性质,等边三角形的性质,新定义;理解题意,利用等边三角形的性质结合勾股定理求点C的坐标是关键,数形结合解题是求yc范围的关键.25、(1)MN=2+;(2)y=•x•2x(0<x<4);(3)1或1.【解析】

(1)解直角三角形求出AD,利用梯形中位线定理即可解决问题;

(2)求出AD,利用梯形的面积公式计算即可;

(3)作AG⊥BC于G,EH⊥BC于H.想办法证明△ABC≌△ECB,推出AC=BE=4,因为AC⊥BE,可得S四边形A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论