2023年江苏省无锡市桃溪中学数学八下期末考试模拟试题含解析_第1页
2023年江苏省无锡市桃溪中学数学八下期末考试模拟试题含解析_第2页
2023年江苏省无锡市桃溪中学数学八下期末考试模拟试题含解析_第3页
2023年江苏省无锡市桃溪中学数学八下期末考试模拟试题含解析_第4页
2023年江苏省无锡市桃溪中学数学八下期末考试模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列数学符号中,属于中心对称图形的是()A. B. C. D.2.如图,矩形ABCD边AD沿折痕AE折叠,使点D落在BC上的F处,已知AB=6,△ABF的面积是24,则FC等于()A.1 B.2 C.3 D.43.下列关于反比例函数的说法中,错误的是()A.图象经过点 B.当时,C.两支图象分别在第二、四象限 D.两支图象关于原点对称4.若分式口,的运算结果为x(x≠0),则在“口”中添加的运算符号为()A.+或x B.-或÷ C.+或÷ D.-或x5.若,则下列不等式不成立的是()A. B. C. D.6.点M(﹣3,y1),N(﹣2,y2)是抛物线y=﹣(x+1)2+3上的两点,则下列大小关系正确的是()A.y1<y2<3 B.3<y1<y2 C.y2<y1<3 D.3<y2<y17.如图,在菱形ABCD中,对角线AC,BD交于点O,AO=3,∠ABC=60°,则菱形ABCD的面积是()A.18 B.183 C.36 D.3638.某校八年级(3)班体训队员的身高(单位:cm)如下:169,165,166,164,169,167,166,169,166,165,获得这组数据方法是()A.直接观察 B.查阅文献资料 C.互联网查询 D.测量9.如图,分别是矩形的边上的点,将四边形沿直线折叠,点与点重合,点落在点处,已知,则的长是()A.4 B.5 C.6 D.710.若分式的值为0,则x的值为()A.-2 B.0 C.2 D.±2二、填空题(每小题3分,共24分)11.截止今年4月2日,华为官方应用市场“学习强国”APP下载量约为88300000次.将数88300000科学记数法表示为_______.12.若二次根式有意义,则x的取值范围是________.13.如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B=______14.如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y=(k≠0)的图象于点B,以AB为边作平行四边形ABCD,点C,点D在x轴上.若S▱ABCD=5,则k=____.15.如图,把菱形ABCD沿AH折叠,使B点落在BC上的E点处,若∠B=70°,则∠EDC的大小为______.16.如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积为______。17.如图,在菱形中,点为上一点,,连接.若,则的度数为__________.18.平面直角坐标系xOy中,直线y=11x﹣12与x轴交点坐标为_____.三、解答题(共66分)19.(10分)计算:(4+)(4﹣)20.(6分)如图,抛物线y=﹣x2+bx+c(a≠0)与x轴交于点A(﹣1,0)和B(3,0),与y轴交于点C,点D的横坐标为m(0<m<3),连结DC并延长至E,使得CE=CD,连结BE,BC.(1)求抛物线的解析式;(2)用含m的代数式表示点E的坐标,并求出点E纵坐标的范围;(3)求△BCE的面积最大值.21.(6分)某公司第一季度花费3000万元向海外购进A型芯片若干条,后来,受国际关系影响,第二季度A型芯片的单价涨了10元/条,该公司在第二季度花费同样的钱数购买A型芯片的数量是第一季度的80%,求在第二季度购买时A型芯片的单价。22.(8分)如图,在凸四边形中,,.(1)利用尺规,以为边在四边形内部作等边(保留作图痕迹,不需要写作法).(2)连接,判断四边形的形状,并说明理由.23.(8分)在RtΔABC中,∠BAC=90°,点O是△ABC所在平面内一点,连接OA,延长OA到点E,使得AE=OA,连接OC,过点B作BD与OC平行,并使∠DBC=∠OCB,且BD=OC,连接DE.(1)如图一,当点O在RtΔABC内部时.①按题意补全图形;②猜想DE与BC的数量关系,并证明.(2)若AB=AC(如图二),且∠OCB=30°,∠OBC=15°,求∠AED的大小.24.(8分)如图,梯形ABCD中,AB//CD,且AB=2CD,E,F分别是AB,BC的中点.EF与BD相交于点M.(1)求证:△EDM∽△FBM;(2)若DB=9,求BM.25.(10分)为了解某中学学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如图统计图表:根据以上提供的信息,解答下列问题:(1)x,a,b;(2)补全上面的条形统计图;(3)若该校共有学生5000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.26.(10分)数学活动课上,老师提出了一个问题:如图1,A、B两点被池塘隔开,在AB外选一点,连接AC和BC,怎样测出A、B两点的距离?(活动探究)学生以小组展开讨论,总结出以下方法:⑴如图2,选取点C,使AC=BC=a,∠C=60°;⑵如图3,选取点C,使AC=BC=b,∠C=90°;⑶如图4,选取点C,连接AC,BC,然后取AC、BC的中点D、E,量得DE=c…(活动总结)(1)请根据上述三种方法,依次写出A、B两点的距离.(用含字母的代数式表示)并写出方法⑶所根据的定理.AB=________,AB=________,AB=________.定理:________.(2)请你再设计一种测量方法,(图5)画出图形,简要说明过程及结果即可.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、B【解析】

试题分析:由四边形ABCD是矩形与AB=6,△ABF的面积是14,易求得BF的长,然后由勾股定理,求得AF的长,根据折叠的性质,即可求得AD,BC的长,继而求得答案.解:∵四边形ABCD是矩形,∴∠B=90°,AD=BC,∵AB=6,∴S△ABF=AB•BF=×6×BF=14,∴BF=8,∴AF===10,由折叠的性质:AD=AF=10,∴BC=AD=10,∴FC=BC﹣BF=10﹣8=1.故选B.考点:翻折变换(折叠问题).3、C【解析】

根据反比例函数的性质和图像的特征进行判断即可.【详解】解:A、因为,所以xy=2,(-1)×(-2)=2,故本选项不符合题意;B、当x=2时,y=1,该双曲线经过第一、三象限,在每个象限内,y随着x的增大而减小,所以当x时,0<y<1,故本选项不符合题意;C、因为k=2>0,该双曲线经过第一、三象限,故本选项错误,符合题意;D、反比例函数的两支双曲线关于原点对称,故本选项不符合题意.故选C【点睛】本题考查了反比例函数的性质.对于反比例函数,当k>0时,双曲线位于第一、三象限,且在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,双曲线位于第二、四象限,在每一个象限内,函数值y随自变量x增大而增大.4、C【解析】

分别将运算代入,根据分式的运算法则即可求出答案.【详解】综上,在“口”中添加的运算符号为或故选:C.【点睛】本题考查了分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.5、C【解析】

直接根据不等式的性质进行分析判断即可得到答案.【详解】A.,则a是负数,可以看成是5<6两边同时加上a,故A选项成立,不符合题意;B.是不等式5<6两边同时减去a,不等号不变,故B选项成立,不符合题意;C.5<6两边同时乘以负数a,不等号的方向应改变,应为:,故选项C不成立,符合题意;D.是不等式5<6两边同时除以a,不等号改变,故D选项成立,不符合题意.故选C.【点睛】本题考查的实际上就是不等式的基本性质:不等式的两边都加上(或减去)同一个数(或式子)不等号的方向不变;不等式两边同乘以(或除以)同一个正数,不等号的方向不变;不等式两边同乘以(或除以)同一个负数,不等号的方向改变.6、A【解析】

根据抛物线的性质,抛物线上的点离对称轴越远,对应的函数值就越小,点(-1,3)在对称轴上,即可得到答案.【详解】抛物线的解析式y=﹣(x+1)2+3可得其对称轴为x=-1,系数a<0,图像开口下下,根据抛物线上的点离对称轴越远,对应的函数值就越小,点(-1,3)在对称轴上,-3<-2所以y1<y2<3.故选A.7、B【解析】

由菱形的性质可求AC,BD的长,由菱形的面积公式可求解.【详解】∵四边形ABCD是菱形∴AO=CO=3,BO=DO=33,AC⊥BD∴AC=6,BD=63∴菱形ABCD的面积=12故选B.【点睛】本题考查了菱形的性质,熟练运用菱形面积公式是本题的关键.8、D【解析】本题考查的是调查收集数据的过程与方法根据八某校年级(3)班体训队员的身高即可判断获得这组数据的方法.由题意得,获得这组数据方法是测量,故选D.思路拓展:解答本题的关键是掌握好调查收集数据的过程与方法.9、B【解析】

设AE=x,,则BE=8-x,根据矩形折叠过程可得:三角形BCE是直角三角形,AE=CE,所以BE2+BC2=CE2【详解】设AE=x,,则BE=8-x,根据矩形折叠过程可得:三角形BCE是直角三角形,AE=CE所以BE2+BC2=CE2所以解得x=5即AE=5故选:B【点睛】考核知识点:矩形的折叠问题.根据勾股定理求解是关键.10、C【解析】由题意可知:,解得:x=2,故选C.二、填空题(每小题3分,共24分)11、.【解析】

科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.【详解】解:将88300000用科学记数法表示为:.故答案为:.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.12、【解析】

根据二次根式有意义的条件可得-x≥0,再解不等式即可.解答【详解】由题意得:-x⩾0,解得:,故答案为:.【点睛】此题考查二次根式有意义的条件,解题关键在于掌握其定义.13、【解析】如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90∘,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD−C′D=−1.故答案为:−1.点睛:本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.14、-1【解析】

设点A(x,),表示点B的坐标,然后求出AB的长,再根据平行四边形的面积公式列式计算即可得解.【详解】设点A(x,),则B(,),∴AB=x-,则(x-)•=5,k=-1.故答案为:-1.【点睛】本题考查了反比例函数系数的几何意义,用点A,B的横坐标之差表示出AB的长度是解题的关键.15、15°【解析】

根据菱形的性质,可得∠ADC=∠B=70°,从而得出∠AED=∠ADE.又因为AD∥BC,故∠DAE=∠AEB=70°,∠ADE=∠AED=55°,即可求解.【详解】解:根据菱形的对角相等得∠ADC=∠B=70°.∵AD=AB=AE,∴∠AED=∠ADE.根据折叠得∠AEB=∠B=70°.∵AD∥BC,∴∠DAE=∠AEB=70°,∴∠ADE=∠AED=(180°-∠DAE)÷2=55°.∴∠EDC=70°-55°=15°.故答案为:15°.【点睛】本题考查了翻折变换,菱形的性质,三角形的内角和定理以及平行线的性质,熟练运用折叠的性质是本题的关键.16、36【解析】

连接AC,在直角三角形ABC中,由AB及BC的长,利用勾股定理求出AC的长,再由AD及CD的长,利用勾股定理的逆定理得到三角形ACD为直角三角形,根据四边形ABCD的面积=直角三角形ABC的面积+直角三角形ACD的面积,即可求出四边形的面积.【详解】连接AC,如图所示:∵∠B=90°,∴△ABC为直角三角形,又∵AB=3,BC=4,∴根据勾股定理得:AC==5,又∵CD=12,AD=13,∴AD=13=169,CD+AC=12+5=144+25=169,∴CD+AC=AD,∴△ACD为直角三角形,∠ACD=90°,则S四边形ABCD=S△ABC+S△ACD=AB⋅BC+AC⋅CD=×3×4+×5×12=36,故四边形ABCD的面积是36【点睛】此题考查勾股定理的逆定理,勾股定理,解题关键在于作辅助线17、18【解析】

由菱形的性质可得AD=CD,∠A=∠BCD,CD∥AB,由等腰三角形的性质可得∠DAE=∠DEA=72°,∠DCE=54°,即可求解.【详解】解:∵四边形ABCD是菱形,∴AD=CD,∠A=∠BCD,CD∥AB,∵DE=AD,∠ADE=36°,∴∠DAE=∠DEA=72°,∵CD∥AB,∴∠CDE=∠DEA=72°,且DE=DC=DA,∴∠DCE=54°,∵∠DCB=∠DAE=72°,∴∠BCE=∠DCB-∠DCE=18°.故答案为:18.【点睛】本题考查了菱形的性质,等腰三角形的性质,熟练运用菱形的性质是本题的关键.18、(,0).【解析】

直线与x轴交点的横坐标就是y=0时,对应x的值,从而可求与x轴交点坐标.【详解】解:当y=0时,0=11x﹣12解得x=,所以与x轴交点坐标为(,0).故答案为(,0).【点睛】本题主要考查一次函数与坐标轴的交点,掌握一次函数与坐标轴的交点的求法是解题的关键.三、解答题(共66分)19、1.【解析】

根据运算法则一一进行计算.【详解】原式=42﹣()2=16﹣7=1.【点睛】本题考查了等式的运算法则,熟练掌握等式的运算法则是本题解题关键.20、(1)y=﹣x2+2x+1.(2)2≤Ey<2.(1)当m=1.5时,S△BCE有最大值,S△BCE的最大值=.【解析】分析:(1)1)把A、B两点代入抛物线解析式即可;(2)设,利用求线段中点的公式列出关于m的方程组,再利用0<m<1即可求解;(1)连结BD,过点D作x轴的垂线交BC于点H,由,设出点D的坐标,进而求出点H的坐标,利用三角形的面积公式求出,再利用公式求二次函数的最值即可.详解:(1)∵抛物线过点A(1,0)和B(1,0)(2)∵∴点C为线段DE中点设点E(a,b)∵0<m<1,∴当m=1时,纵坐标最小值为2当m=1时,最大值为2∴点E纵坐标的范围为(1)连结BD,过点D作x轴的垂线交BC于点H∵CE=CD∴H(m,-m+1)∴当m=1.5时,.点睛:本题考查了二次函数的综合题、待定系数法、一次函数等知识点,解题的关键是灵活运用所学知识解决问题,会用方程的思想解决问题.21、在第二季度购买时A型芯片的单价为50元.【解析】

依据题目找到数量关系:第一季度购买时A型芯片的数量第二季度购买时A型芯片的数量,列出方程,解方程即可。【详解】解:设在第二季度购买时A型芯片的单价为x元,依题意可得:解得:经检验可知是原分式方程的解。答:在第二季度购买时A型芯片的单价为50元.【点睛】本题考查了分式方程的应用,找到数量关系列出方程是解题的关键.22、(1)见解析;(2)四边形ABCE是菱形,理由见解析.【解析】

(1)分别以点C、D为圆心,CD长为半径画弧,在四边形ABCD内部交于点E,连接CE、DE即可得;(2)先证AB∥CE,结合AB=CE可得四边形ABCE是平行四边形,然后由AB=BC可得四边形ABCE是菱形.【详解】解:(1)如图所示,△CDE即为所求:(2)四边形ABCE是菱形,理由:∵△CDE是等边三角形,∴∠ECD=60°,CD=DE=CE,∵∠ABC+∠BCD=240°,∴∠ABC+∠BCE=180°,∴AB∥CE,又∵AB=BC=CD,∴AB=CE,∴四边形ABCE是平行四边形,∵AB=BC,∴四边形ABCE是菱形.【点睛】本题主要考查作图,等边三角形的性质和菱形的判定,解题的关键是掌握等边三角形和菱形的判定及性质.23、(1)①补全图形,如图一,见解析;②猜想DE=BC.证明见解析;(2)∠AED=30°或15°.【解析】

(1)①根据要求画出图形即可解决问题.②结论:DE=BC.连接OD交BC于F,连接AF.证明AF为Rt△ABC斜边中线,为△ODE的中位线,即可解决问题.(2)分两种情形:如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.证明△BMA≌△BMO(AAS),推出AM=OM,∠BMO=∠BMA=120°,推出∠AMO=120°,即可解决问题.如图三中,当点O在△ABC外部时,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.分别求解即可.【详解】(1)①补全图形,如图一,②猜想DE=BC.如图,连接OD交BC于点F,连接AF在△BDF和△COF中,∠DBF=∠OCF∴△BDF≌ΔCOF∴DF=OF,BF=CF∴F分别为BC和DO的中点∵∠BAC=90°,F为BC的中点,∴AF=12∵OA=AE,F为BC的中点,∴AF=12∴DE=BC(2)如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.由(1)可知:AF为Rt△ABC斜边中线,为△ODE的中位线,∵AB=AC,∴AF垂直平分线段BC,∴MB=MC,∵∠OCB=30°,∠OBC=15°,∴∠MBC=∠MCB=30°,∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∠MBO=∠MBA=15°,∵∠BAM=∠BOM=45°,BM=BM,∴△BMA≌△BMO(AAS),∴AM=OM,∠BMO=∠BMA=120°,∴∠AMO=120°,∴∠MAO=∠MOA=30°,∴∠AED=∠MAO=30°.如图三中,当点O在△ABC外部时,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.由∠BOM=∠BAM=45°,可知A,B,M,O四点共圆,∴∠MAO=∠MBO=30°-15°=15°,∵DE∥AM,∴∠AED=∠MAO=15°,综上所述,满足条件的∠AED的值为15°或30°.【点睛】本题属于三角形综合题,考查了全等三角形的判定和性质,直角三角形斜边中线的性质,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论