版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.一次函数的图像与y轴交点的坐标是()A.(0,-4) B.(0,4) C.(2,0) D.(-2,0)2.如图,在中,,,,则点到的距离为()A. B. C. D.3.如图,是某市6月份日平均气温情况,在日平均气温这组数据中,众数和中位数分别是()A.21,22 B.21,21.5 C.10,21 D.10,224.下列各多项式中,不能用平方差公式分解的是().A.a2b2-1 B.4-1.25a2 C.-a2-b2 D.-x2+15.下列式子因式分解正确的是()A.x2+2x+2=(x+1)2+1 B.(2x+4)2=4x2+16x+16C.x2﹣x+6=(x+3)(x﹣2) D.x2﹣1=(x+1)(x﹣1)6.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.7.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:每天锻炼时间(分钟)20406090学生数2341则关于这些同学的每天锻炼时间,下列说法错误的是()A.众数是60 B.平均数是21 C.抽查了10个同学 D.中位数是508.如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:3 B.1:4 C.2:3 D.1:29.如图,在正方形ABCD中,E是AD的中点,F是CD上一点,且CF=3FD.则图中相似三角形的对数是()A.1 B.2 C.3 D.)410.下表是两名运动员10次比赛的成绩,,分别表示甲、乙两名运动员测试成绩的方差,则有()8分9分10分甲(频数)424乙(频数)343A. B. C. D.无法确定二、填空题(每小题3分,共24分)11.将直线y=﹣2x+4向下平移5个单位长度,平移后直线的解析式为_____.12.如图,有一块菱形纸片ABCD,沿高DE剪下后拼成一个矩形,矩形的长和宽分别是5cm,3cm.EB的长是______.13.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解是__________.14.如果最简二次根式与是同类二次根式,那么a=________.15.一组数据:,,0,1,2,则这组数据的方差为____.16.如图,△ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,则D到AB的距离为____cm.17.在平面直角坐标系中,点在第________象限.18.计算:(﹣)2=_____.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,O为原点,点A(2,1),B(﹣2,4),直线AB与y轴交于点C.(1)求点C的坐标;(2)求证:△OAB是直角三角形.20.(6分)用适当的方法解下列方程:(1)x(2﹣x)=x2﹣2(2)(2x+5)2﹣3(2x+5)+2=021.(6分)已知与成反比例,且当时,.(1)求关于的函数表达式.(2)当时,的值是多少?22.(8分)已知△ABC的三边长a、b、c满足|a-4|+(2b-12)2+=0,试判断△ABC的形状,并说明理由.23.(8分)先化简,再求值:()•,其中x=﹣1.24.(8分)(1)分解因式:;(2)解方程:25.(10分)已知△ABC,AB=AC,D为BC上一点,E为AC上一点,AD=AE.(1)如果∠BAD=10°,∠DAE=30°,那么∠EDC=°.(2)如果∠ABC=60°,∠ADE=70°,那么∠BAD=°,∠CDE=°.(3)设∠BAD=α,∠CDE=β猜想α,β之间的关系式,并说明理由.26.(10分)如图,在中,,分别是边,上的点,且.求证:四边形为平行四边形.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
根据点在直线上点的坐标满足方程的关系,在解析式中令x=0,即可求得与y轴的交点的纵坐标,由此即可得答案.【详解】令x=0,得y=2×0+4=4,则函数与y轴的交点坐标是(0,4).故选B.2、D【解析】
根据直角三角形的性质、勾股定理分别求出AB、BC,根据三角形的面积公式计算即可.【详解】解:设点C到AB的距离为h,
∵∠C=90°,∠A=30°,
∴AB=2BC,
由勾股定理得,AB2-BC2=AC2,即(2BC)2-BC2=22,
解得,BC=,
则AB=2BC=,
由三角形的面积公式得,,
解得,h=1,
故选:D.【点睛】本题考查的是直角三角形的性质,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.3、A【解析】
根据众数和中位数的定义求解.【详解】解:这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是1,所以中位数是1.
故选A.【点睛】本题考查众数的定义:一组数据中出现次数最多的数据叫做众数.也考查了条形统计图和中位数.4、C【解析】分析:平方差公式是指,本题只要根据公式即可得出答案.详解:A、原式=(ab+1)(ab-1);B、原式=(2+1.5a)(2-1.5a);C、不能用平方差公式进行因式分解;D、原式=(1+x)(1-x).故选C.点睛:本题主要考查的是平方差公式因式分解,属于基础题型.解决这个问题的关键就是明白平方差公式的形式.5、D【解析】
利用因式分解定义,以及因式分解的方法判断即可.【详解】解:A、x2+2x+2不能进行因式分解,故A错误;B、(2x+4)2=4x2+16x+16不符合因式分解的定义,故B错误;C、,等式左右不相等,故C错误;D、x2﹣1=(x+1)(x﹣1),正确故选:D.【点睛】本题考查了因式分解的概念及判断,掌握因式分解的定义是解题的关键.6、D【解析】
根据轴对称图形和中心对称图形的概念识别即可.(轴对称图形是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形;中心对称图形是指在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合.)【详解】解:A选项不是轴对称图形,是中心对称图形;B选项是轴对称图形,不是中心对称图形;C选项是轴对称图形,不是中心对称图形;D选项既是轴对称图形,又是中心对称图形,故选D.【点睛】本题主要考查轴对称图形和中心对称图形的识别,这是重点知识,必须熟练掌握,关键在于根据概念判断.7、B【解析】
根据众数、中位数和平均数的定义分别对每一项进行分析即可.【详解】解:A、60出现了4次,出现的次数最多,则众数是60,故A选项说法正确;B、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B选项说法错误;C、调查的户数是2+3+4+1=10,故C选项说法正确;D、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D选项说法正确;故选:B.【点睛】此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.8、D【解析】解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴DF:AB=DE:EB.∵O为对角线的交点,∴DO=BO.又∵E为OD的中点,∴DE=DB,则DE:EB=1:1,∴DF:AB=1:1.∵DC=AB,∴DF:DC=1:1,∴DF:FC=1:2.故选D.9、C【解析】在中,在中,在中,在中,根据相似三角形的判定,,故选C.10、A【解析】【分析】先求甲乙平均数,再运用方差公式求方差.【详解】因为,,,所以,=,=,所以,故选A【点睛】本题考核知识点:方差.解题关键点:熟记方差公式.二、填空题(每小题3分,共24分)11、y=-2x-1.【解析】
直接根据“上加下减”的平移规律求解即可.【详解】直线y=-2x+4向下平移5个单位长度后:y=-2x+4-5,即y=-2x-1.故答案为:y=-2x-1.【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.12、1cm【解析】
根据菱形的四边相等,可得AB=BC=CD=AD=5,在Rt△AED中,求出AE即可解决问题.【详解】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD=5(cm),∵DE⊥AB,DE=3(cm),在Rt△ADE中,AE==4,∴BE=AB−AE=5−4=1(cm),故答案为1cm.【点睛】本题考查了菱形的性质、勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题,试题难度不大.13、﹣3【解析】令时,解得,故与轴的交点为.由函数图象可得,当时,函数的图象在轴上方,且其函数图象在函数图象的下方,故解集是,所以关于的不等式的整数解为.14、1【解析】
根据同类二次根式可知,两个二次根式内的式子相等,从而得出a的值.【详解】∵最简二次根式与是同类二次根式∴1+a=4a-2解得:a=1故答案为:1.【点睛】本题考查同类二次根式的应用,解题关键是得出1+a=4a-2.15、2【解析】
先求出这组数据的平均数,再根据方差的公式计算即可.【详解】解:这组数据的平均数是:(-1-2+0+1+2)÷5=0,则这组数据的方差为:.【点睛】本题考查方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16、2.1【解析】试题分析:先要过D作出垂线段DE,根据角平分线的性质求出CD=DE,再根据已知即可求得D到AB的距离的大小.解:过点D作DE⊥AB于E,∵AD平分∠BAC,DE⊥AB,DC⊥AC∴CD=DE又BD:DC=2:1,BC=7.8cm∴DC=7.8÷(2+1)=7.8÷3=2.1cm.∴DE=DC=2.1cm.故填2.1.点评:此题主要考查角平分线的性质;根据角平分线上的点到角的两边的距离相等进行解答,各角线段的比求出线段长是经常使用的方法,比较重要,要注意掌握.17、二【解析】
根据各象限内点的坐标特征解答.【详解】解:点位于第二象限.
故答案为:二.【点睛】本题考查了各象限内点的坐标的符号特征以,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).18、.【解析】
根据乘方的定义计算即可.【详解】(﹣)2=.故答案为:.【点睛】本题考查了乘方的意义,一般地,n个相同的因数a相乘,即a·a·a·…·a计作an,这种求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,a叫做底数,n叫做指数.三、解答题(共66分)19、(1)(0,52);(2【解析】
(1)利用待定系数法求出直线AB的解析式,求出点C的坐标;(2)根据勾股定理分别求出OA2、OB2、AB2,根据勾股定理的逆定理判断即可.【详解】(1)解:设直线AB的解析式为:y=kx+b,点A(2,1),B(﹣2,4),则2k+b=1-2k+b=4解得,k=-3∴设直线AB的解析式为:y=﹣34x+5∴点C的坐标为(0,52(2)证明:∵点A(2,1),B(﹣2,4),∴OA2=22+12=5,OB2=22+42=20,AB2=(4-1)2+(-2-2)2=25,则OA2+OB2=AB2,∴△OAB是直角三角形.【点睛】本题考查的是待定系数法求一次函数解析式、勾股定理的逆定理,掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题的关键.20、(1)x1=,x1=;(1)x1=﹣,x1=﹣1.【解析】
(1)整理后求出b1﹣4ac的值,再代入公式求出即可;(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】(1)x(1﹣x)=x1﹣1,整理得:x1﹣x﹣1=0,△=b1﹣4ac=(﹣1)1﹣4×1×(﹣1)=5,x,∴x1,x1;(1)(1x+5)1﹣3(1x+5)+1=0,(1x+5﹣1)(1x+5﹣1)=0,1x+5﹣1=0,1x+5﹣1=0,∴x1,x1=﹣1.【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解答此题的关键.21、(1);(2)【解析】
(1)设(为常数,),把,代入求出k的值即可;(2)把代入(1)中求得的解析式即可求出的值.【详解】解:(1)与成反比例可知,可设(为常数,),当时,,解得,关于的函数表达式;(2)把代入,得.【点睛】本题考查了待定系数法求反比例函数解析式,以及求反比例函数值,熟练掌握待定系数法是解答本题的关键.22、△ABC为直角三角形,理由见解析.【解析】
根据绝对值、平方、二次根式的非负性即可列出式子求出a,b,c的值,再根据勾股定理即可判断.【详解】△ABC为直角三角形,理由,由题意得a-4=0.2b-12=0,10-c=0,所以a=8、b=6,c=10.所以a2+b2=c2,△ABC为直角三角形.【点睛】此题主要考查勾股定理的应用,解题的关键是根据非负性求出各边的长.23、1﹣2.【解析】先根据分式混合运算的法则把括号里的进行化简,然后进行乘法运算,再把x的值代入进行计算即可.解:原式==3(x+1)﹣x+1=3x+3﹣x+1=1x+3.当x=﹣1时,原式=1×(﹣1)﹣1=1﹣2.24、(1);(2)原方程无解.【解析】
(1)首先利用平方差公式进行分解因式,再利用完全平方公式继续分解即可;
(2)观察可得最简公分母是2(2x-1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】(1)解:原式(2)解:经检验:是原方程的增根.∴原方程无解.【点睛】此题主要考查了解分式方程以及分解因式,正确掌握解方式方程的方法和因式分解的方法是解题关键.25、(1)5(2)20,10(3)α=2β,理由见解析.【解析】
(1)先求出∠BAC=40°,再利用等腰三角形的性质求出∠B,∠ADE,根据三角形外角的性质求出∠ADC,减去∠ADE,即可得出结论;(2)先利用等腰三角形的性质求出∠DAE,进而求出∠BAD,即可得出结论;(3)利用等腰三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024门窗行业绿色环保认证与推广合同3篇
- 二零二五版股权激励计划执行与监督合同3篇
- 专业滑雪教学合作合同书2024版版B版
- 西安交通大学《基础护理学基本技能1》2023-2024学年第一学期期末试卷
- 武汉晴川学院《心理咨询伦理》2023-2024学年第一学期期末试卷
- 专业塔吊故障检修服务协议样本版A版
- 二零二五版建筑垃圾再生利用与建材企业合作协议3篇
- 二零二五年度股权代持与公司治理创新合同范本2篇
- 2024版供货协议范本
- 2024年网络安全服务提供商合作协议 with 服务内容包括攻防演练、安全监控
- 2025年度影视制作公司兼职制片人聘用合同3篇
- 儿童糖尿病的饮食
- 干细胞项目商业计划书
- 浙江省嘉兴市2024-2025学年高一数学上学期期末试题含解析
- 2024年高考新课标Ⅱ卷语文试题讲评课件
- 回收二手机免责协议书模板
- 云南省普通初中学生成长记录-基本素质发展初一-初三
- 2023年系统性硬化病诊断及诊疗指南
- 外科医师手术技能评分标准
- 《英语教师职业技能训练简明教程》全册配套优质教学课件
- 采购控制程序
评论
0/150
提交评论