版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下面几个函数关系式中,成正比例函数关系的是()A.正方体的体积和棱长B.正方形的周长和边长C.菱形的面积一定,它的两条对角线长D.圆的面积与它的半径2.在下列条件中,能判定四边形为平行四边形的是()A.两组对边分别平行 B.一组对边平行且另一组对边相等C.两组邻边相等 D.对角线互相垂直3.用配方法解方程,经过配方,得到()A. B. C. D.4.为了解我校初三年级所有同学的数学成绩,从中抽出500名同学的数学成绩进行调查,抽出的500名考生的数学成绩是()A.总体 B.样本 C.个体 D.样本容量5.已知长方形的周长为16cm,其中一边长为xcm,面积为ycm2,则这个长方形的面积y与边长x之间的关系可表示为()A.y=x2 B.y=(8﹣x)2 C.y=x(8﹣x) D.y=2(8﹣x)6.甲,乙,丙,丁四位跨栏运动员在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲,乙,丙,丁成绩的方差分别是0.11,0.03,0.05,0.02,则当天这四位运动员“110米跨栏”训练成绩最稳定的是()A.甲 B.乙 C.丙 D.丁7.如图是一次函数y=kx+b的图象,则k、b的符号是()A.k>0,b<0 B.k<0,b>0 C.k<0,b<0 D.k>0,b>08.要使分式有意义,则x的取值应满足()A.x≠2 B.x≠1 C.x=2 D.x=﹣19.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.2,3,4 C.1.5,2,2.5 D.1,,310.在Rt△ABC中,D为斜边AB的中点,且BC=3,AC=4,则线段CD的长是()A.2 B.3 C.52 D.11.如图,正方形ABCD的周长是16,P是对角线AC上的个动点,E是CD的中点,则PE+PD的最小值为()A.2 B.2 C.2 D.412.如图,在菱形ABCD中,点E,F,G,H分别是边AB,BC,CD和DA的中点,连接EF,FG,GH和HE,若EH=2EF=2,则菱形ABCD的边长为(
)A.
B.2
C.2
D.4二、填空题(每题4分,共24分)13.若关于x的分式方程有增根,则m的值为_______.14.如图,已知点是双曲线在第一象限上的一动点,连接,以为一边作等腰直角三角形(),点在第四象限,随着点的运动,点的位置也不断的变化,但始终在某个函数图像上运动,则这个函数表达式为______.15.如图,函数()和()的图象相交于点,则不等式的解集为_________.16.如图,点A,B分别是反比例函数y=-1x与y=kx的图象上的点,连接AB,过点B作BC⊥x轴于点C,连接AC交y轴于点E.若AB∥x轴,AE:EC=1:2,则k17.已知一次函数y=-2x+9的图象经过点(a,3)则a=_______.18.若分式的值为0,则x的值为_________;三、解答题(共78分)19.(8分)解方程:(1)(2)(3)20.(8分)某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式如图所示.(1)第20天的总用水量为多少米3?(2)当x≥20时,求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?21.(8分)(1)如图①,点M是正方形ABCD的边BC上一点,点N是CD延长线上一点,且BM=DN,则线段AM与AN的关系.(2)如图②,在正方形ABCD中,点E、F分别在边BC、CD上,且∠EAF=45°,判断BE,DF,EF三条线段的数量关系,并说明理由.(3)如图③,在四边形ABCD中,AB=AD,∠BAD=90°,∠ABC+∠ADC=180°,点E、F分别在边BC、CD上,且∠EAF=45°,若BD=5,EF=3,求四边形BEFD的周长.22.(10分)如图,等腰△ABC中,已知AC=BC=2,AB=4,作∠ACB的外角平分线CF,点E从点B沿着射线BA以每秒2个单位的速度运动,过点E作BC的平行线交CF于点F.(1)求证:四边形BCFE是平行四边形;(2)当点E是边AB的中点时,连接AF,试判断四边形AECF的形状,并说明理由;(3)设运动时间为t秒,是否存在t的值,使得以△EFC的其中两边为邻边所构造的平行四边形恰好是菱形?不存在的,试说明理由;存在的,请直接写出t的值.答:t=________.23.(10分)为了增强环境保护意识,在环保局工作人员指导下,若干名“环保小卫士”组成了“控制噪声污染”课题学习研究小组.在“世界环境日”当天,该小组抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB),将调查的数据进行处理(设所测数据均为正整数),得频数分布表如下:组别噪声声级分组频数频率144.5~59.540.1259.5~74.5a0.2374.5~89.5100.25489.5~104.5bc5104.5~119.560.15合计401.00根据表中提供的信息解答下列问题:(1)频数分布表中的a=,b=,c=;(2)补充完整频数分布直方图;(3)如果全市共有300个测量点,那么在这一时刻噪声声级小于75dB的测量点约有多少个?24.(10分)如图1,正方形ABCD的对角线AC,BD相交于点O,E是AC上一点,连接EB,过点A作AM⊥BE,垂足为M,AM与BD相交于F.(1)直接写出线段OE与OF的数量关系;(2)如图2,若点E在AC的延长线上,过点A作AM⊥BE,AM交DB的延长线于点F,其他条件不变.问(1)中的结论还成立吗?如果成立,请给出证明;如果不成立,说明理由;(3)如图3,当BC=CE时,求∠EAF的度数.25.(12分)中,分别是上的不动点.且,点是上的一动点.(1)当时(如图1),求的度数;(2)若时(如图2),求的度数还会与(1)的结果相同吗?若相同,请写出求解过程;若不相同,请说明理由.26.如图,正方形ABCD的对角线AC和BD相交于点O,正方形A1B1C1O的边OA1交AB于点E,OC1交BC于点F.(1)求证:(BE+BF)2=2OB2;(2)如果正方形ABCD的边长为a,那么正方形A1B1C1O绕O点转动的过程中,与正方形ABCD重叠部分的面积始终等于(用含a的代数式表示)
参考答案一、选择题(每题4分,共48分)1、B【解析】
根据正比例函数的定义进行判断.【详解】解:A、设正方体的体积为V,棱长为a,则V=a3,不符合正比例函数的定义,故本选项错误;B、设正方形的周长为C,边长为a,则C=4a,符合正比例函数的定义,故本选项正确;C、设菱形面积为S,两条对角线长分别为m,n,则S=mn,不符合正比例函数的定义,故本选项错误;D、设圆的面积为S,半径为r,则S=πr2,不符合正比例函数的定义,故本选项错误;故选:B.【点睛】本题主要考查正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.2、A【解析】
根据平行四边形的判定定理逐个判断即可.【详解】A、两组对边分别平行的四边形是平行四边形,故本选项符合题意;B、一组对边平行且另一组对边相等的四边形不一定是平行四边形,故本选项不符合题意;C、两组邻边相等的四边形不一定是平行四边形,故本选项不符合题意;D、对角线互相平分的四边形才是平行四边形,故本选项不符合题意;故选A.【点睛】本题考查了平行四边形的判定定理,能熟记平行四边形的判定定理的内容是解此题的关键,注意:平行四边形的判定定理有:①两组对边分别平行的四边形是平行四边形,②两组对边分别相等的四边形是平行四边形,③两组对角分别平行的四边形是平行四边形,④一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形.3、B【解析】
按照配方法的步骤,先把常数项移到右侧,然后在两边同时加上一次项系数一半的平方,配方即可.【详解】x2+3x+1=0,x2+3x=-1,x2+3x+=-1+,,故选B.【点睛】本题考查了解一元二次方程——配方法,熟练掌握配方法的步骤以及要求是解题的关键.4、B【解析】
根据总体、个体、样本、样本容量的定义逐个判断即可.【详解】解:抽出的500名考生的数学成绩是样本,故选B.【点睛】本题考查了总体、个体、样本、样本容量等知识点,能熟记总体、个体、样本、样本容量的定义是解此题的关键.5、C【解析】
直接利用长方形面积求法得出答案.【详解】解:∵长方形的周长为16cm,其中一边长为xcm,∴另一边长为:(8﹣x)cm,∴y=(8﹣x)x.故选C.【点睛】此题主要考查了函数关系式,正确表示出长方形的另一边长是解题关键.6、D【解析】
根据方差的定义,方差越小数据越稳定.【详解】∵0.02<0.03<0.05<0.11,∴丁的成绩的方差最小,∴当天这四位运动员“110米跨栏”的训练成绩最稳定的是丁。故选:D.【点睛】此题考查方差,解题关键在于掌握其定义7、D【解析】试题分析:根据一次函数的图像与性质,由图像向上斜,可知k>0,由与y轴的交点,可知b>0.故选:D点睛:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.8、A【解析】
根据分式有意义的条件是分母不为0列出不等式,解可得自变量x的取值范围,【详解】由题意得,x-2≠0,解得,x≠2,故选A.【点睛】本题主要考查了分式有意义的条件,掌握分式有意义的条件是分母不等于0是解题的关键.9、C【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、42+52=41≠62,不可以构成直角三角形,故A选项错误;B、22+32=13≠42,不可以构成直角三角形,故B选项错误;C、1.52+22=6.25=2.52,可以构成直角三角形,故C选项正确;D、,不可以构成直角三角形,故D选项错误.故选:C.【点睛】本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.10、C【解析】
根据勾股定理列式求出AB的长度,再根据直角三角形斜边上的中线等于斜边的一半解答.【详解】解:∵AC=4cm,BC=3,
∴AB=AC2+B∵D为斜边AB的中点,
∴CD=12AB=12×5=52.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,熟记性质是解题的关键.11、A【解析】
由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PE+PD=BE最小,而BE是直角△CBE的斜边,利用勾股定理即可得出结果.【详解】解:如图,连接BE,设BE与AC交于点P',∵四边形ABCD是正方形,∴点B与D关于AC对称,∴P'D=P'B,∴P'D+P'E=P'B+P'E=BE最小.即P在AC与BE的交点上时,PD+PE最小,即为BE的长度.∴直角△CBE中,∠BCE=90°,BC=4,CE=CD=2,∴.故选:A.【点睛】本题题考查了轴对称中的最短路线问题,要灵活运用正方形的性质、对称性是解决此类问题的重要方法,找出P点位置是解题的关键12、A【解析】
连接AC、BD交于O,根据菱形的性质得到AC⊥BD,OA=OC,OB=OD,根据三角形中位线定理、矩形的判定定理得到四边形EFGH是矩形,根据勾股定理计算即可.【详解】连接AC、BD交于O,
∵四边形ABCD是菱形,
∴AC⊥BD,OA=OC,OB=OD,
∵点E、F、G、H分别是边AB、BC、CD和DA的中点,∴EF=AC,EH=BD,EF∥AC,EH∥BD,∴四边形EFGH是平行四边形,EH⊥EF,∴四边形EFGH是矩形,∵EH=2EF=2,
∴OB=2OA=2,∴AB=.故选:A.【点睛】考查的是中点四边形,掌握菱形的性质、三角形中位线定理是解题的关键.二、填空题(每题4分,共24分)13、1【解析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母,得到,然后代入化为整式方程的方程算出m的值.【详解】解:方程两边都乘,得∵原方程有增根,∴最简公分母,解得,当时,故m的值是1,故答案为1【点睛】本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.14、.【解析】
设点B所在的反比例函数解析式为,分别过点A、B作AD⊥轴于D,BE⊥轴于点E,由全等三角形的判定定理可知△AOD△OBE(ASA),故可得出,即可求得的值.【详解】解:设点B所在的反比例函数解析式为,分别过点A、B作AD⊥轴于D,BE⊥轴于点E,如图:∵∠AOE+∠DOB=90°,∠AOE+∠OAD=90°,∴∠OAD=∠BOE,同理可得∠AOD=∠OBE,在△AOD和△OBE中,,∴△AOD△OBE(ASA),∵点B在第四象限,∴,即,解得,∴反比例函数的解析式为:.故答案为.【点睛】本题考查动点问题,难度较大,是中考的常考知识点,正确作出辅助线,证明两个三角形全等是解题的关键.15、【解析】
写出直线在直线下方部分的的取值范围即可.【详解】解:由图可知,不等式的解集为;故答案为:.【点睛】本题考查了一次函数与一元一次不等式,此类题目,利用数形结合的思想求解是解题的关键.16、1.【解析】
设A(m,-1m),则B(﹣mk,-1m),设AB交y轴于M,利用平行线的性质,得到AM【详解】解:设A(m,-1m),则B(﹣mk,-1m),设AB交∵EM∥BC,∴AM:MB=AE:EC=1:1,∴﹣m:(﹣mk)=1:1,∴k=1,故答案为1.【点睛】本题考查的知识点是反比例函数系数k的几何意义,解题关键是利用平行线的性质进行解题.17、3【解析】
将(a,3)代入一次函数解析式y=-2x+9进行计算即可得.【详解】把(a,3)代入一次函数解析式y=-2x+9,得3=-2a+9,解得:a=3,故答案为:3.【点睛】本题考查了一次函数图象上点的坐标特征,熟知一次函数图象上的点的坐标一定满足该函数的解析式是解题的关键.18、3【解析】
根据分式的值为0,分子为0,分母不为0,可得x-3=0且x+3≠0,即可得x=3.故答案为:x=3.三、解答题(共78分)19、(1),.(2),.(3)原方程无解【解析】
(1)方程利用公式法求出解即可;
(2)方程利用因式分解法求出解即可;
(3)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)解:,,,,,.(2)解:原方程可变形为,即.或=0.所以,.(3)解:方程两边同时乘,得.解这个方程,得.检验:当时,,是增根,原方程无解.【点睛】此题考查了解一元二次方程-因式分解法及公式法,熟练掌握各种解法是解本题的关键.20、(1)1000;(2)y=300x﹣5000;(3)40【解析】
根据题意得出第20天的总用水量;y与x的函数关系式为分段函数,则需要分两段分别求出函数解析式;将y=7000代入函数解析式求出x的值.【详解】(1)第20天的总用水量为1000米3当0<x<20时,设y=mx∵函数图象经过点(20,1000),(30,4000)∴m=50y与x之间的函数关系式为:y=50x当x≥20时,设y=kx+b∵函数图象经过点(20,1000),(30,4000)∴1000=20k+b4000=30k+b解得k=300b=-5000∴y与x(3)当y=7000时,有7000=300x﹣5000,解得x=40考点:一次函数的性质21、(1)结论:AM=AN,AM⊥AN.理由见解析;(2)BE+DF=EF;(3)四边形BEFD的周长为1.【解析】
(1)利用正方形条件证明△ABM≌△ADN,即可推出结论,(2)过点A作AG⊥AE交CD延长线于点G,证明△ABE≌△ADG得AE=AG,∠EAF=∠GAF进而证明△AEF≌△AGF,得EF=FG即可解题,(3)过点A作AG⊥AE交CD延长线于点G.证明△ABE≌△ADG得AE=AG,∠EAF=∠GAF进而证明△AEF≌△AGF,得EF=FG即可解题.【详解】(1)结论:AM=AN,AM⊥AN.理由:∵四边形ABCD是正方形,∴AB=AD,∠B=∠ADN=∠BAD=90°,∵BM=DN,∴△ABM≌△ADN,∴AM=AN,∠BAM=∠DAN,∴∠AMN=∠BAD=90°,∴AM⊥AN,(2)如图②中,过点A作AG⊥AE交CD延长线于点G.∵四边形ABCD为正方形,∴AB=AD,∠B=∠BAD=∠ADC=90°.∴∠B=∠ADG=90°,∠BAE+∠EAD=90°.∵AG⊥AE,∴∠DAG+∠EAD=90°.∴∠BAE=∠DAG.在△ABE和△ADG中,,∴△ABE≌△ADG.∴AE=AG,BE=DG.∵∠EAF=45°,AG⊥AE,∴∠EAF=∠GAF=45°.在△FAE和△FAG中,,∴△AEF≌△AGF.∴EF=FG.∵FG=DF+DG=DF+BE,∴BE+DF=EF.(3)如图③中,过点A作AG⊥AE交CD延长线于点G.∵AB=AD,∠ABC+∠ADC=180°,∠ADG+∠ADC=180°∴∠ABE=∠ADG,∵AG⊥AE,∴∠DAG+∠EAD=90°.∵∠BAE+∠EAD=90°∴∠BAE=∠DAG.在△ABE和△ADG中,,∴△ABE≌△ADG.∴AE=AG,BE=DG.∵∠EAF=45°,AG⊥AE,∴∠EAF=∠GAF=45°.在△FAE和△FAG中,,∴△AEF≌△AGF.∴EF=FG.∵FG=DF+DG=DF+BE,∴BE+DF=EF.∴四边形BEFD的周长为EF+(BE+DF)+DB=3+3+5=1.【点睛】本题考查了三角形全等的判定,正方形的性质,中等难度,作辅助线是解题关键.22、(1)见解析;(2)四边形AECF是矩形,理由见解析;(3)秒或5秒或2秒【解析】
(1)已知EF∥BC,结合已知条件利用两组对边分别平行证明BCFE是平行四边形;因为AC=BC,等角对等边,得∠B=∠BAC,CF平分∠ACH,则∠ACF=∠FCH,结合∠ACH=∠B+∠BAC=∠ACF+∠FCH,等量代换得∠FCH=∠B,则同位角相等两直线平行,得BE∥CF,结合EF∥BC,证得四边形BCFE是平行四边形;(2)先证∠AED=90°,再证四边形AECF是平行四边形,则四边形AECF是平行四边形是矩形;
AC=BC,E是AB的中点,由等腰三角形三线合一定理知CE⊥AB,因为四边形BCFE是平行四边形,得CF=BE=AE,AE∥CF,一组对边平行且相等,且有一内角是直角,则四边形AECF是矩形;(3)分三种情况进行①以EF和CF两边为邻边所构造的平行四边形恰好是菱形时,则邻边BE=BC,这时根据S=vt=2t=,求出t即可;②以CE和CF两边为邻边所构造的平行四边形恰好是菱形时,过C作CD⊥AB于D,AC=BC,三线合一则BD的长可求,在Rt△BDC中运用勾股定理求出CD的长,把ED长用含t的代数式表示出来,现知EG=CF=EC=EB=2t,在Rt△EDC中,利用勾股定理列式即可求出t;③以CE和EF两边为邻边所构造的平行四边形恰好是菱形时,则CA=AF=BC,此时E与A重合,则2t=AB=4,求得t值即可.【详解】(1)证明:如图1,∵AC=BC,∴∠B=∠BAC,∵CF平分∠ACH,∴∠ACF=∠FCH,∵∠ACH=∠B+∠BAC=∠ACF+∠FCH,∴∠FCH=∠B,∴BE∥CF,∵EF∥BC,∴四边形BCFE是平行四边形(2)解:四边形AECF是矩形,理由是:如图2,∵E是AB的中点,AC=BC,∴CE⊥AB,∴∠AEC=90°,由(1)知:四边形BCFE是平行四边形,∴CF=BE=AE,∵AE∥CF,∴四边形AECF是矩形(3)秒或5秒或2秒分三种情况:①以EF和CF两边为邻边所构造的平行四边形恰好是菱形时,如图3,∴BE=BC,即2t=2,t=;②以CE和CF两边为邻边所构造的平行四边形恰好是菱形时,如图4,过C作CD⊥AB于D,∵AC=BC,AB=4,∴BD=2,由勾股定理得:CD===6,∵EG2=EC2,即(2t)2=62+(2t﹣2)2,t=5;③以CE和EF两边为邻边所构造的平行四边形恰好是菱形时,如图5,CA=AF=BC,此时E与A重合,∴t=2,综上,t的值为秒或5秒或2秒;故答案为:秒或5秒或2秒.【点睛】本题主要考查平行四边形,矩形,菱形等四边形的性质与证明,熟悉基本定理是解题基础,本题第三问的关键在于能够分情况讨论列出方程.23、(1)a=8,b=12,c=0.3;(2)见解析;(3)90.【解析】
(1)在一个问题中频数与频率成正比.就可以比较简单的求出a、b、c的值;(2)另外频率分布直方图中长方形的高与频数即测量点数成正比,则易确定各段长方形的高;(3)利用样本估计总体,样本中噪声声级小于75dB的测量点的频率是0.3,乘以总数即可求解.【详解】(1)根据频数与频率的正比例关系,可知,首先可求出a=8,再通过40−4−6−8−10=12,求出b=12,最后求出c=0.3;(2)如图:(3)算出样本中噪声声级小于75dB的测量点的频率是0.3,0.3×300=90,∴在这一时噪声声级小于75dB的测量点约有90个.【点睛】此题考查频数(率)分布直方图,频数(率)分布表,用样本估计总体,解题关键在于看懂图中数据.24、(1)OE=OF;(2)OE=OF仍然成立,理由见解析;(3)67.5°.【解析】分析:(1)根据正方形的性质利用ASA判定△AOF≌△BOE,根据全等三角形的对应边相等得到OE=OF;(2)类比(1)的方法证得同理得出结论成立;(3)由BC=CE,可证A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 糖尿病病人血糖管理
- 品德与生活课件
- 电扶梯安全管理制度
- 万达融资管理案例分析
- 幼儿园预防手足口病
- 初中生的生涯规划书
- 库尔班大叔课件
- 降低阴道分娩产妇会阴侧切率QC小组改善PDCA项目汇报书
- 碳减排计划执行
- 风温病护理查房
- 2024年秋新版人教版三年级英语上册电子课本
- JBT 8127-2011 内燃机 燃油加热器
- 2024年广东省广州市海珠区中考英语一模试卷(含详细答案解析)
- 吸烟对肺部健康的影响-机制与干预
- DL∕T 5853-2022 火力发电厂烟囱工程施工与验收规范
- 2024年云南省烟花爆竹经营单位安全生产考试练习题
- 放射科工作发展计划方案
- 急诊胸痛的识别
- 竣工验收设计总结
- 2024-2029年中国红蓝光治疗仪行业市场现状分析及竞争格局与投资发展研究报告
- (2024年)传染病培训课件
评论
0/150
提交评论