版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列说法:①对角线互相垂直的四边形是菱形;②矩形的对角线垂直且互相平分;③对角线相等的四边形是矩形;④对角线相等的菱形是正方形;⑤邻边相等的矩形是正方形.其中正确的是()A.个 B.个 C.个 D.个2.已知矩形的较短边长为6,对角线相交成60°角,则这个矩形的较长边的长是()A. B. C.9 D.123.下列命题是真命题的是()A.如果a2=b2,那么a=bB.如果两个角是同位角,那么这两个角相等C.相等的两个角是对项角D.在同一平面内,垂直于同一条直线的两条直线平行4.要关于x的一元二次方程mx2+2x+1=0有两个不相等的实数根,那么m的值可以是()A.2 B.1 C.0 D.﹣15.如图,在中,,,,则点到的距离为()A. B. C. D.6.在平面直角坐标系中,已知点在第四象限,且点到轴的距离是4,到轴的距离是3,那么点的坐标为()A. B. C. D.7.根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A.9 B.7 C.﹣9 D.﹣78.点关于x轴对称的点的坐标是A. B. C. D.9.一个多边形的每个内角都等于135°,则这个多边形的边数为()A.5 B.6 C.7 D.810.如图,M是的边BC的中点,平分,于点N,延长BN交AC于点B,已知,,,则的周长是()A.43 B.42 C.41 D.4011.一组数据2,2,4,3,6,5,2的众数和中位数分别是A.3,2 B.2,3 C.2,2 D.2,412.小明做了四道题:;;;;做对的有()A. B. C. D.二、填空题(每题4分,共24分)13.当a=______时,的值为零.14.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=__________度.15.如图所示,小明从坡角为30°的斜坡的山底(A)到山顶(B)共走了200米,则山坡的高度BC为米.16.化简:=__.17.如图,直线AB,IL,JK,DC,相互平行,直线AD,IJ、LK、BC互相平行,四边形ABCD面积为18,四边形EFGH面积为11,则四边形IJKL面积为____.18.如图,在中,,,是角平分线,是中线,过点作于点,交于点,连接,则线段的长为_____.三、解答题(共78分)19.(8分)图(a)、图(b)、图(c)是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图(a)、图(b)、图(c)中,分别画出符合要求(1),(2),(3)的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.(1)画一个底边为4,面积为8的等腰三角形;(2)画一个面积为10的等腰直角三角形;(3)画一个面积为12的平行四边形。20.(8分)直线是同一平面内的一组平行线.(1)如图1.正方形的4个顶点都在这些平行线上,若四条直线中相邻两条之间的距离都是1,其中点,点分别在直线和上,求正方形的面积;(2)如图2,正方形的4个顶点分别在四条平行线上,若四条直线中相邻两条之间的距离依次为.①求证:;②设正方形的面积为,求证.21.(8分)(1)分解因式:a2b﹣4ab2+4b1.(2)解方程.22.(10分)如图,在△ABC中,.请用尺规在AC上作点P,使点P到A、B的距离相等保留作图痕迹,不写作法和证明23.(10分)已知:点A、C分别是∠B的两条边上的点,点D、E分别是直线BA、BC上的点,直线AE、CD相交于点P.(1)点D、E分别在线段BA、BC上;①若∠B=60°(如图1),且AD=BE,BD=CE,则∠APD的度数为;②若∠B=90°(如图2),且AD=BC,BD=CE,求∠APD的度数;(2)如图3,点D、E分别在线段AB、BC的延长线上,若∠B=90°,AD=BC,∠APD=45°,求证:BD=CE.24.(10分)某校师生去外地参加夏令营活动,车票价格为每人100元,车站提出两种车票价格的优惠方案供学校选择.第一种方案是教师按原价付款,学生按原价的78%付款;第二种方案是师生都按原价的80%付款.该校参加这项活动的教师有5名,学生有x名.(1)设购票付款为y元,请写出y与x的关系式.(2)请根据夏令营的学生人数,选择购票付款的最佳方案?25.(12分)先化简,再求值:,其中x=,y=.26.如图,在平行四边形中,点、别在,上,且.(1)如图①,求证:四边形是平行四边形;(2)如图②,若,且.,求平行四边形的周长.
参考答案一、选择题(每题4分,共48分)1、B【解析】
利用正方形的判定和性质,菱形的判定和性质,矩形的判定和性质进行依次判断可求解.【详解】解:①对角线互相垂直的四边形不一定是菱形,故①错误;
②矩形的对角线相等且互相平分,故②错误;
③对角线相等的四边形不一定是矩形,故③错误;
④对角线相等的菱形是正方形,故④正确,
⑤邻边相等的矩形是正方形,故⑤正确
故选B.【点睛】本题考查了正方形的判定和性质,菱形的判定和性质,矩形的判定和性质,灵活运用这些性质和判定解决问题是本题的关键.2、B【解析】
根据矩形对角线相等且互相平分的性质和题中的条件易得△AOB为等边三角形,即可得到矩形对角线的长,进而求解即可.【详解】如图:AB=6,∠AOB=60°,∵四边形是矩形,AC,BD是对角线,∴OA=OB=OC=OD=BD=AC,在△AOB中,OA=OB,∠AOB=60°,∴OA=OB=AB=6,BD=2OB=12,∴BC=.故选:B.【点睛】本题主要考查了矩形的性质,勾股定理等内容,熟悉性质是解题的关键.3、D【解析】
利用平方的定义、平行线的性质、对顶角的性质及平面内两直线的位置关系分别判断后即可确定正确的选项.【详解】A、如果a2=b2,那么a=±b,故错误,是假命题;B、两直线平行,同位角才相等,故错误,是假命题;C、相等的两个角不一定是对项角,故错误,是假命题;D、平面内,垂直于同一条直线的两条直线平行,正确,是真命题,故选D.【点睛】本题考查了命题与定理的知识,解题的关键是了解平方的定义、平行线的性质、对顶角的性质及平面内两直线的位置关系等知识,难度不大.4、D【解析】
根据一元二次方程的定义和判别式的意义得到m≠1且△=22-4m>1,然后求出两个不等式的公共部分即可.【详解】根据题意得m≠1且△=22﹣4m>1,解得m<1且m≠1.故选D.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=1(a≠1)的根与△=b2-4ac有如下关系:当△>1时,方程有两个不相等的两个实数根;当△=1时,方程有两个相等的两个实数根;当△<1时,方程无实数根.5、D【解析】
根据直角三角形的性质、勾股定理分别求出AB、BC,根据三角形的面积公式计算即可.【详解】解:设点C到AB的距离为h,
∵∠C=90°,∠A=30°,
∴AB=2BC,
由勾股定理得,AB2-BC2=AC2,即(2BC)2-BC2=22,
解得,BC=,
则AB=2BC=,
由三角形的面积公式得,,
解得,h=1,
故选:D.【点睛】本题考查的是直角三角形的性质,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.6、D【解析】
根据各象限内点的坐标特征解答即可.【详解】解:因为点在第四象限,且点到轴的距离是4,到轴的距离是3,所以点的坐标为,故选:.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限.7、C【解析】
先求出x=7时y的值,再将x=4、y=-1代入y=2x+b可得答案.【详解】∵当x=7时,y=6-7=-1,∴当x=4时,y=2×4+b=-1,解得:b=-9,故选C.【点睛】本题主要考查函数值,解题的关键是掌握函数值的计算方法.8、A【解析】
根据关于x轴对称的点,横坐标相同,纵坐标互为相反数进行求解即可得.【详解】由平面直角坐标系中关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得:点p关于x轴的对称点的坐标是,故选A.【点睛】本题考查了关于x轴对称点的性质,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.9、D【解析】
先求出多边形的每一个外角的度数,继而根据多边形的外角和为360度进行求解即可.【详解】∵一个多边形的每个内角都等于135°,∴这个多边形的每个外角都等于180°-135°=45°,∵多边形的外角和为360度,∴这个多边形的边数为:360÷45=8,故选D.【点睛】本题考查了多边形的外角和内角,熟练掌握多边形的外角和为360度是解本题的关键.10、A【解析】
证明△ABN≌△ADN,得到AD=AB=10,BN=DN,根据三角形中位线定理求出CD,计算即可.【详解】解:在△ABN和△ADN中,∴△ABN≌△ADN,
∴AD=AB=10,BN=DN,
∵M是△ABC的边BC的中点,BN=DN,
∴CD=2MN=8,
∴△ABC的周长=AB+BC+CA=43,
故选A.【点睛】本题考查的是三角形的中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.11、B【解析】
根据众数的意义,找出出现次数最多的数,根据中位数的意义,排序后找出处在中间位置的数即可.【详解】解:这组数据从小到大排列是:2,2,2,3,4,5,6,出现次数最多的数是2,故众数是2;处在中间位置的数,即处于第四位的数是中位数,是3,故选:.【点睛】考查众数、中位数的意义,即从出现次数最多的数、和排序后处于之中间位置的数.12、D【解析】
根据无理数的运算法则,逐一计算即可.【详解】,正确;,错误;,错误;,正确;故答案为D.【点睛】此题主要考查无理数的运算,熟练掌握,即可解题.二、填空题(每题4分,共24分)13、﹣1.【解析】
根据分式的值为零的条件列式计算即可.【详解】由题意得:a2﹣1=2,a﹣1≠2,解得:a=﹣1.故答案为:﹣1.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子为2;②分母不为2.这两个条件缺一不可.14、22.5°【解析】
四边形ABCD是矩形,AC=BD,OA=OC,OB=OD,OA=OB═OC,∠OAD=∠ODA,∠OAB=∠OBA,∠AOE=∠OAD+∠ODA=2∠OAD,∠EAC=2∠CAD,∠EAO=∠AOE,AE⊥BD,∠AEO=90°,∠AOE=45°,∠OAB=∠OBA=67.5°,即∠BAE=∠OAB﹣∠OAE=22.5°.考点:矩形的性质;等腰三角形的性质.15、1【解析】试题分析:直接利用坡角的定义以及结合直角三角中30°所对的边与斜边的关系得出答案.解:由题意可得:AB=200m,∠A=30°,则BC=AB=1(m).故答案为:1.16、1【解析】
利用同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减,即可得出答案.【详解】解:=1.故答案是:1.【点睛】考查了分式的加减法,熟练掌握运算法则是解本题的关键.17、1【解析】
由平行四边形的性质可得,,,,由面积和差关系可求四边形面积.【详解】解:,,四边形是平行四边形,,同理可得:,,,四边形面积四边形面积(四边形面积四边形面积),故答案为:1.【点睛】本题考查了平行四边形的判定与性质,由平行四边形的性质得出是解题的关键.18、1【解析】
首先根据全等三角形判定的方法,判断出△AFG≌△AFC,即可判断出FG=FC,AG=AC,所以点F是CG的中点;然后根据点E是BC的中点,可得EF是△CBG的中位线,再根据三角形中位线定理,求出线段EF的长为多少即可.【详解】∵AD是∠BAC的平分线,
∴∠FAG=∠FAC,
∵CG⊥AD,
∴∠AFG=∠AFC=90°,
在△AFG和△AFC中,,
∴△AFG≌△AFC,
∴FG=FC,AG=AC=4,
∴F是CG的中点,
又∵点E是BC的中点,
∴EF是△CBG的中位线,∴.故答案为:1.【点睛】本题考查了全等三角形的判定以及三角形的中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.三、解答题(共78分)19、如图所示:【解析】试题分析:(1)底边长为4,面积为8,即高也要为4,所以就从网格中找一条为4的底边,找这个边的垂直平分线,也为4的点,即是三角形的顶点;(2)面积为10的等腰直角三角形,根据三角形的面积公式可知,两直角边要为,那就是找一个长为4,宽为2的矩形的对角线为直角边,然后连接斜边;(3)画一个面积为12的矩形后再通过平移一对对边得到平行四边形.考点:基本作图点评:基本作图是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.20、(1)9或5;(2)①见解析,②见解析【解析】
(1)分两种情况:①如图1-1,得出正方形ABCD的边长为2,求出正方形ABCD的面积为9;②如图1-2,过点B作EF⊥l1于E,交l4于F,则EF⊥l4,证明△ABE≌△BCF(AAS),得出AE=BF=2由勾股定理求出AB=,即可得出答案;(2)①过点B作EF⊥l1于E,交l4于F,作DM⊥l4于M,证明△ABE≌△BCF(AAS),得出AE=BF,同理△CDM≌△BCF(AAS),得出△ABE≌△CDM(AAS),得出BE=DM即可;②由①得出AE=BF=h2+h2=h2+h1,得出正方形ABCD的面积S=AB2=AE2+BE2,即可得到答案.【详解】解:(1)①如图,当点分别在上时,面积为:;②如图,当点分别在上时,过点B作EF⊥l1于E,交l4于F,则EF⊥l4,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠ABE+∠CBF=180°-90°=90°,∵∠CBF+∠BCF=90°,∴∠ABE=∠BCF,在△ABE和△BCF中,∴△ABE≌△BCF(AAS),∴AE=BF=2,∴AB=,∴正方形ABCD的面积=AB2=5;综上所述,正方形ABCD的面积为9或5;(2)①证明:过点B作EF⊥l1于E,交l4于F,作DM⊥l4于M,如图所示:则EF⊥l4,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠ABE+∠CBF=180°-90°=90°,∵∠CBF+∠BCF=90°,∴∠ABE=∠BCF,在△ABE和△BCF中,,
∴△ABE≌△BCF(AAS),∴AE=BF,同理△CDM≌△BCF(AAS),∴△ABE≌△CDM(AAS),∴BE=DM,即h1=h2.②解:由①得:AE=BF=h2+h2=h2+h1,∵正方形ABCD的面积:S=AB2=AE2+BE2,∴S=(h2+h1)2+h12=2h12+2h1h2+h3.【点睛】本题考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.21、(1)b(a﹣2b)2;(2)x=-2【解析】
(1)运用提公因式法与公式法进行因式分解即可;(2)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.【详解】解:(1);(2)去分母,得,解得,经检验:是原方程的解.【点睛】本题主要考查了因式分解以及解分式方程,解分式方程时,一定要检验.22、见详解【解析】
根据线段垂直平分线性质作图求解即可.【详解】解:如图,作AB的垂直平分线,交AC于P.则PA=PB,点P为所求做的点.【点睛】本题考查尺规作图.线段垂直平分线的性质:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.作线段的垂直平分线是解决本题关键.23、(1)①60°;②45°;(2)见解析【解析】
(1)连结AC,由条件可以得出△ABC为等边三角形,再由证△CBD≌△ACE就可以得出∠BCD=∠CAE,就可以得出结论;(2)作AF⊥AB于A,使AF=BD,连结DF,CF,就可以得出△FAD≌△DBC,再证△DCF为等腰直角三角形,由∠FAD=∠B=90°,就可以得出AF∥BC,就可以得出四边形AECF是平行四边形,就有AE∥CF,就可以得出∠EAC=∠FCA,就可以得出结论;(3)作AF⊥AB于A,使AF=BD,连结DF,CF,就可以得出△FAD≌△DBC,再证△DCF为等腰直角三角形,就有∠DCF=∠APD=45°,推出CF∥AE,由∠FAD=∠B=90°,就可以得出AF∥BC,就可以得出四边形AFCE是平行四边形,就有AF=CE.【详解】(1)①如图1,连结AC,∵AD=BE,BD=CE,∴AD+BD=BE+CE,∴AB=BC.∵∠B=60°,∴△ABC为等边三角形.∴∠B=∠ACB=60°,BC=AC.在△CBD和△ACE中,∴△CBD≌△ACE(SAS),∴∠BCD=∠CAE.∵∠APD=∠CAE+∠ACD,∴∠APD=∠BCD+∠ACD=60°.故答案为60°;②如图2,作AF⊥AB于A,使AF=BD,连结DF,CF,∴∠FAD=90°.∵∠B=90°,∴∠FAD=∠B.在△FAD和△DBC中,,∴△FAD≌△DBC(SAS),∴DF=DC,∠ADF=∠BCD.∵∠BDC+∠BCD=90°,∴∠ADF+∠BDC=90°,∴∠FDC=90°,∴∠FCD=45°.∵∠FAD=90°,∠B=90,∴∠FAD+∠B=180°,∴AF∥BC.∵DB=CE,∴AF=CE,∴四边形AECF是平行四边形,∴AE∥CF,∴∠EAC=∠FCA.∵∠APD=∠ACP+∠EAC,∴∠APD=∠ACP+∠ACE=45°;(2)如图3,作AF⊥AB于A,使AF=BD,连结DF,CF,∴∠FAD=90°.∵∠ABC=90°,∴∠FAD=∠DBC=90°.在△FAD和△DBC中,,∴△FAD≌△DBC(SAS),∴DF=DC,∠ADF=∠BCD.∵∠BDC+∠BCD=90°,∴∠ADF+∠BDC=90°,∴∠FDC=90°,∴∠FCD=45°.∵∠APD=45°,∴∠FCD=∠APD,∴CF∥AE.∵∠FAD=90°,∠ABC=90,∴∠FAD=∠ABC,∴AF∥BC.∴四边形AECF是平行四边形,∴AF=CE,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024商业空间软装装饰协议样本版B版
- 2024专业物业管理服务协议版B版
- 2024年国际贸易合作标准协议模板版B版
- 2024专业住宅装修协议范本集锦版B版
- 2024年企业股东全权转让协议范本版B版
- 2024年定制别墅施工劳动协议范本版B版
- 2024年商品预售协议条件版版B版
- 2024全新住房公积金协议书下载
- 2024年度体育盛事运动会场地租赁合同版
- 2024年工程招投标代理协议
- 防窒息、噎食护理应急预案试题
- 2024壬二酸科学祛痘消费者报告-质润x美丽修行-202406
- 中国当代知名作家矛盾生平介绍
- 保密教育培训方案(3篇模板)
- 创新工作室考核制度
- 章丘铁锅运营方案
- 设备安全风险评估报告
- 戴医用外科口罩评分标准
- 使用单位特种设备安全风险管控清单
- 桥梁工程应知应会
- 门诊患者安全管理
评论
0/150
提交评论