版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.已知:以a,b,c为边的三角形满足(a﹣b)(b﹣c)=0,则这个三角形是()A.等腰三角形 B.直角三角形C.等边三角形 D.等腰直角三角形2.两个一次函数与,它们在同一直角坐标系中的图象可能是()A. B.C. D.3.函数中自变量x的取值范围是()A. B. C. D.4.若m<n,则下列结论正确的是()A.2m>2n B.m﹣4<n﹣4 C.3+m>3+n D.﹣m<﹣n5.一个平行四边形的两条对角线的长分别为8和10,则这个平行四边形边长不可能是()A.2B.5C.8D.106.如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.37.下列根式是最简二次根式的是()A.2 B.23 C.9 D.8.如图,E,F分别是正方形ABCD边AD、BC上的两定点,M是线段EF上的一点,过M的直线与正方形ABCD的边交于点P和点H,且PH=EF,则满足条件的直线PH最多有(
)条A.1 B.2 C.3 D.49.下列命题是假命题的是()A.直角三角形中,30°角所对的直角边等于斜边的一半B.三角形三条边的垂直平分线的交点到三角形的三个顶点的距离相等C.平行四边形是中心对称图形D.对角线相等的四边形是平行四边形10.如图,在菱形ABCD中,E,F分别是AB,AC的中点,如果EF=2,那么菱形ABCD周长是()A.4 B.8 C.12 D.16二、填空题(每小题3分,共24分)11.一次函数y=﹣x+4图象与x轴、y轴分别交于点A、点B,点P为正比例函数y=kx(k>0)图象上一动点,且满足∠PBO=∠POA,则AP的最小值为_____.12.如图,某港口P位于南北延伸的海岸线上,东面是大海.“远洋”号、“长峰”号两艘轮船同时离开港口P,各自沿固定方向航行,“远洋”号每小时航行12nmile,“长峰”号每小时航行16nmile,它们离开港东口1小时后,分别到达A,B两个位置,且AB=20nmile,已知“远洋”号沿着北偏东60°方向航行,那么“长峰”号航行的方向是________.13.如图所示,在矩形纸片ABCD中,点M为AD边的中点,将纸片沿BM,CM折叠,使点A落在A1处,点D落在D1处.若∠1=30°,则∠BMC的度数为____.
14.菱形的周长是20,一条对角线的长为6,则它的面积为_____.15.若,则的值是________16.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数100400800100020005000发芽种子粒数8531865279316044005发芽频率0.8500.7950.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率为___________(精确到0.1).17.已知一组数据﹣3、3,﹣2、1、3、0、4、x的平均数是1,则众数是_____.18.如图,菱形ABCD的对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=10cm,则OE的长为_____.三、解答题(共66分)19.(10分)已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=4,∠BCD=120°,求四边形AODE的面积.20.(6分)在开展“好书伴我成长”读书活动中,某中学为了解八年级名学生的读书情况,随机调查了八年级名学生读书的册数,统计数据如下表所示.册数人数(1)求这个数据的平均数、众数和中位数.(2)根据这组数据,估计该校八年级名学生在本次活动中读书多于册的人数.21.(6分)中,分别是上的不动点.且,点是上的一动点.(1)当时(如图1),求的度数;(2)若时(如图2),求的度数还会与(1)的结果相同吗?若相同,请写出求解过程;若不相同,请说明理由.22.(8分)如图,在矩形中,点为上一点,连接、,.(1)如图1,若,,求的长.(2)如图2,点是的中点,连接并延长交于,为上一点,连接,且,求证:.23.(8分)如图①,四边形和四边形都是正方形,且,,正方形固定,将正方形绕点顺时针旋转角().(1)如图②,连接、,相交于点,请判断和是否相等?并说明理由;(2)如图②,连接,在旋转过程中,当为直角三角形时,请直接写出旋转角的度数;(3)如图③,点为边的中点,连接、、,在正方形的旋转过程中,的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.24.(8分)(1)计算:40372﹣4×2018×2019;(2)将边长为1的一个正方形和一个底边为1的等腰三角形如图摆放,求△ABC的面积.25.(10分)如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF,求证:四边形ADCF是菱形.26.(10分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
参考答案一、选择题(每小题3分,共30分)1、A【解析】
根据题意得到a-b=0或b-c=0,从而得到a=b或b=c,得到该三角形为等腰三角形.【详解】解:因为以a,b,c为边的三角形满足(a﹣b)(b﹣c)=0,所以a﹣b=0或b﹣c=0,得到a=b或b=c,所以三角形为等腰三角形,故选:A.【点睛】本题考查等腰三角形,解题的关键是掌握等腰三角形的性质.2、C【解析】
根据函数图象判断a、b的符号,两个函数的图象符号相同即是正确,否则不正确.【详解】A、若a>0,b<0,符合,不符合,故不符合题意;B、若a>0,b>0,符合,不符合,故不符合题意;C、若a>0,b<0,符合,符合,故符合题意;D、若a<0,b>0,符合,不符合,故不符合题意;故选:C.【点睛】此题考查一次函数的性质,能根据一次函数的解析式y=kx+b中k、b的符号判断函数图象所经过的象限,当k>0时函数图象过一、三象限,k<0时函数图象过二、四象限;当b>0时与y轴正半轴相交,b<0时与y轴负半轴相交.3、B【解析】试题分析:根据二次根式的意义,被开方数是非负数.所以1﹣x≥0,解得x≤1.故选B.考点:函数自变量的取值范围.4、B【解析】
根据不等式的性质逐个判断即可.【详解】解:A、∵m<n,∴2m<2n,故本选项不符合题意;B、∵m<n,∴m﹣4<n﹣4,故本选项符合题意;C、∵m<n,∴3+m<3+n,故本选项不符合题意;D、∵m<n,∴﹣m>﹣n,故本选项不符合题意;故选:B.【点睛】此题主要考查不等式的性质,解题的关键是熟知不等式的性质辨别方法.5、D【解析】试题分析:根据平行四边形的对角线互相平分和三角形三边关系可求得平行四边形边长的取值范围,可求得答案.解:如图,在平行四边形ABCD中,对角线AC=8,BD=1,且交于点O,则AO=AC=4,BO=DO=BD=5,∴5﹣4<AB<5+4,5﹣4<AD<5+4,即1<AB<9,1<AD<9,故平行四边形的边长不可能为1.故选D.【点评】本题主要考查平行四边形的性质和三角形三边关系,由三角形三边关系求得平行四边形边长的取值范围是解题的关键.6、A【解析】
根据菱形的对角线互相垂直,利用勾股定理列式求出OB即可.【详解】解:∵四边形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB===4,∴BD=2OB=8,故选A.【点睛】本题考查了菱形性质,勾股定理的应用等知识,比较简单,熟记性质是解题的关键.7、A【解析】
判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A、3是最简二次根式,符合题意;B、23=6C、9=3,不符合题意;D、12=23,不符合题意;故选A.【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.8、C【解析】
如图1,过点B作BG∥EF,过点C作CN∥PH,利用正方形的性质,可证得AB∥CD,AD∥BC,∠A=∠NBC=90°,AB=BC,再证明BG=CN,利用HL证明Rt△ABG≌Rt△CBN,根据全等三角形的对应角相等,可知∠ABG=∠BCN,然后证明PH⊥EF即可,因此过点M作EF的垂线满足的有一条直线;图2中还有2条,即可得出答案.【详解】解:如图1,过点B作BG∥EF,过点C作CN∥PH,∵正方形ABCD,∴AB∥CD,AD∥BC,∠A=∠NBC=90°,AB=BC,∴四边形BGEF,四边形PNCH是平行四边形,
EF=BG,PH=CN,∵PH=EF,∴BG=CN,在Rt△ABG和Rt△CBN中,BG=CN∴Rt△ABG≌Rt△CBN(HL)∴∠ABG=∠BCN,∵∠ABG+∠GBC=90°∴∠BCN+∠GBC=90°,∴BG⊥CN,∴PH⊥EF,∴过点M作EF的垂线满足的有一条直线;如图2图2中有两条P1H1,P2H2,所以满足条件的直线PH最多有3条,故答案为:C【点睛】本题考查了正方形的性质、等腰三角形的性质、全等三角形的判定与性质、熟练掌握正方形的性质是关键.9、D【解析】
利用直角三角形的性质、三角形的外心的性质、平行四边形的对称性及判定分别判断后即可确定正确的选项.【详解】解:A、直角三角形中,30°角所对的直角边等于斜边的一半,正确,是真命题;
B、三角形三条边的垂直平分线的交点到三角形的三个顶点的距离相等,正确,是真命题;
C、平行四边形是中心对称图形,正确,是真命题;
D、对角线互相平分的四边形是平行四边形,故原命题错误,是假命题,
故选:D.【点睛】本题考查命题与定理的知识,解题的关键是了解直角三角形的性质、三角形的外心的性质、平行四边形的对称性及判定.10、D【解析】
解:∵菱形ABCD中,E,F分别是AB,AC的中点,EF=2,∴BC=2EF=2×2=1.即AB=BC=CD=AD=1.故菱形的周长为1BC=1×1=2.故答案为2.【点睛】本题考查三角形中位线定理;菱形的性质.二、填空题(每小题3分,共24分)11、2﹣2【解析】如图所示:因为∠PBO=∠POA,所以∠BPO=90°,则点P是以OB为直径的圆上.设圆心为M,连接MA与圆M的交点即是P,此时PA最短,∵OA=4,OM=2,∴MA=又∵MP=2,AP=MA-MP∴AP=.12、南偏东30°【解析】
直接得出AP=12nmile,PB=16nmile,AB=20nmile,利用勾股定理逆定理以及方向角得出答案.【详解】如图,由题意可得:AP=12nmile,PB=16nmile,AB=20nmile,∵122+162=202,∴△APB是直角三角形,∴∠APB=90°,∵“远洋”号沿着北偏东60°方向航行,∴∠BPQ=30°,∴“长峰”号沿南偏东30°方向航行;故答案为南偏东30°.【点睛】此题主要考查了勾股定理的逆定理以及解直角三角形的应用,正确得出各线段长是解题关键.13、105°【解析】
根据∠1=30°,得∠A1MA+∠DMD1=180°-30°=150°,根据折叠的性质,得∠A1MB=AMB,∠D1MC=∠DMC,从而求解.【详解】由折叠,可知∠A1MB=AMB,∠D1MC=∠DMC.因为∠1=30°,所以∠A1MA+∠DMD1=180°-30°=150°所以∠AMB+∠DMC=∠A1MA+∠DMD1=×150°=75°,所以∠BMC的度数为180°-75°=105°.故答案为:105°【点睛】本题考查的是矩形的折叠问题,理解折叠后的角相等是关键.14、1.【解析】
先画出图形,根据菱形的性质可得,DO=3,根据勾股定理可求得AO的长,从而得到AC的长,再根据菱形的面积公式即可求得结果.【详解】由题意得,∵菱形ABCD∴,AC⊥BD∴∴∴考点:本题考查的是菱形的性质【点睛】解答本题的关键是熟练掌握菱形的对角线互相垂直且平分,菱形的四条边相等;同时熟记菱形的面积等于对角线乘积的一半.15、.【解析】解:∵﹣=2,∴a﹣b=﹣2ab,∴原式====﹣.故答案为﹣.16、1.2【解析】
仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,从而得到结论.【详解】∵观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,∴该玉米种子发芽的概率为1.2,故答案为1.2.【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.17、3【解析】∵-3、3,-2、1、3、0、4、x的平均数是1,∴-3+3-2+1+3+0+4+x=8∴x=2,∴一组数据-3、3,-2、1、3、0、4、2,∴众数是3.故答案是:3.18、5cm【解析】
只要得出OE是△ABC的中位线,从而求得OE的长.【详解】解:∵OE∥DC,AO=CO,∴OE是△ABC的中位线,∵四边形ABCD是菱形,∴AB=AD=10cm,∴OE=5cm.故答案为5cm.【点睛】本题考查了菱形的性质及三角形的中位线定理,属于基础题,关键是得出OE是△ABC的中位线,难度一般.三、解答题(共66分)19、(1)详见解析;(2)矩形AODE面积为【解析】
(1)根据菱形的性质得出AC⊥BD,再根据平行四边形的判定定理得四边形AODE为平行四边形,由矩形的判定定理得出四边形AODE是矩形;(2)证明△ABC是等边三角形,得出OA=×4=2,由勾股定理得出OB=2,由菱形的性质得出OD=OB=2,即可求出四边形AODE的面积.【详解】(1)证明:∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵在菱形ABCD中,AC⊥BD,∴平行四边形AODE是矩形,故四边形AODE是矩形;(2)解:∵∠BCD=120°,AB∥CD,∴∠ABC=180°-120°=60°,∵AB=BC,∴△ABC是等边三角形,∴OA=×4=2,∵在菱形ABCD中,AC⊥BD∴由勾股定理OB==2,∵四边形ABCD是菱形,∴OD=OB=2,∴四边形AODE的面积=OA•OD=2=4.【点睛】本题考查了矩形的判定以及菱形的性质,还考查了平行四边形的判定,掌握平行四边形的判定方法是解题的关键.20、(1)平均数为2;众数为3;中位数为2;(2)216人.【解析】
(1)根据平均数、众数、中位数的概念求解;(2)根据样本数据,估计本次活动中读书多于2册的人数.【详解】解:(1)由题意得,平均数为:,读书册数为3的人数最多,即众数为3,第25人和第26人读数厕所的平均值为中位数,及中位数为:,(2)(人.答:估计七年级读书多于2册的有216人.【点睛】本题考查了众数、中位数、平均数的知识,掌握各知识点的概念是解答本题的关键.21、(1);(2)相同,.【解析】
(1)根据等腰三角形的性质和三角形的内角和即可得到结论;
(2)根据全等三角形的判定和性质和三角形的内角和即可得到结论.【详解】(1)(2)相同,理由是:又【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,熟练正确全等三角形的判定和性质是解题的关键.22、(1);(2)见解析【解析】
(1)利用等腰直角三角形的性质及勾股定理求AB和AE的长,然后根据矩形的性质求得CD和ED的长,从而利用勾股定理求解;(2)延长交的延长线于,利用AAS定理证得,得到,,然后求得,从而使问题得解.【详解】解:(1)∵矩形,∴又∵∴设,在中,即解得:,(舍)∴∵矩形∴,∴在中,,∴;(2)如答图,延长交的延长线于∵,∴又∵为的中点,∴在和中∴∴,∵,∴∴∴∴【点睛】本题考查矩形的性质,勾股定理解直角三角形,全等三角形的判定和性质,等腰三角形的判定和性质,有一定的综合性,掌握相关性质定理正确推理论证是解题关键.23、(1)相等,理由见解析;(2)和;(3)存在,最大值为.【解析】
(1)由四边形ABCD和四边形CEFG都是正方形知BC=CD,CF=CE,∠BCD=∠GCE=90°,从而得∠BCG=∠DCE,证△BCG≌△DCE得BG=DE;
(2)分两种情况求解可得;
(3)由,知当点P到BD的距离最远时,△BDP的面积最大,作PH⊥BD,连接CH、CP,则PH≤CH+CP,当P、C、H三点共线时,PH最大,此时△BDP的面积最大,据此求解可得.【详解】(1)证明:相等∵四边形和四边形都是正方形,∴,,,∴,即,∴;∴BG=DE(2)如图1,∠ACG=90°时,旋转角;如图2,当∠ACG=90°时,旋转角;综上所述,旋转角的度数为45°或225°;(3)存在∵如图3,在正方形中,,∴,∴当点到的距离最远时,的面积最大,作,连接,,则当三点共线时,最大,此时的面积最大.∵,点为的中点,∴此时,,∴.【点睛】本题是四边形的综合问题,解题的关键是掌握正方形的性质、旋转的性质、全等三角形的判定与性质等知识点.24、(1)1;(2).【解析】
(1)根据完全平方公式进行计算,即可得出答案;(2)如图,过点C作CD⊥BF于D,CE⊥AB,交AB延长线于E,利用正方形和等腰三角形的性质得出CE的长,进而得出△ABC的面积即可.【详解】(1)40372﹣4×2018×2019=(2019+2018)2﹣4×2018×2019=20192+2×2019×2018+20182-4×2018×2019=20192-2×2019×2018+20182=(2019﹣2018)2=12=1.(2)如图,过点C作CD⊥BF于D,CE⊥AB,交AB延长线于E,∵△BCF是等腰三角形,∴DB=BF,∵四边形ABFG是正方形,∴∠FB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论