2023年浙江省台州市黄岩区黄岩实验中学数学八年级第二学期期末学业质量监测模拟试题含解析_第1页
2023年浙江省台州市黄岩区黄岩实验中学数学八年级第二学期期末学业质量监测模拟试题含解析_第2页
2023年浙江省台州市黄岩区黄岩实验中学数学八年级第二学期期末学业质量监测模拟试题含解析_第3页
2023年浙江省台州市黄岩区黄岩实验中学数学八年级第二学期期末学业质量监测模拟试题含解析_第4页
2023年浙江省台州市黄岩区黄岩实验中学数学八年级第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.当x分别取-2019、-2018、-2017、…、-2、-1、0、1、、、…、、、时,分别计算分式的值,再将所得结果相加,其和等于()A.-1 B.1 C.0 D.20192.若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2C.m>2 D.m<23.如图,,矩形在的内部,顶点,分别在射线,上,,,则点到点的最大距离是()A. B. C. D.4.一次函数与的图象如图所示,有下列结论:①;②;③当时,其中正确的结论有()A.个 B.个 C.个 D.个5.下列各组数据中,不是勾股数的是()A.3,4,5 B.5,7,9 C.8,15,17 D.7,24,256.某学校在开展“节约每一滴水”的活动中,从九年级的500名同学中任选出10名同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表所示:节水量(单位:t)0.511.52同学数(人)2341请你估计这500名同学的家庭一个月节约的水总量大约是()A.400t B.500t C.700t D.600t7.如图,△ABC中,∠BAC=90°,AD⊥BC于D,若AB=2,BC=4,则CD的长是()A.1 B.4 C.3 D.28.下列各组数中不能作为直角三角形的三边长的是()A.3,4,5 B.13,14,15 C.5,12,13 D.15,8,179.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y.则下列图象能大致反映y与x的函数关系的是()A. B. C. D.10.如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是()A.x>2 B.x<2 C.x≥2 D.x≤2二、填空题(每小题3分,共24分)11.如图:已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴,轴分别交于点C、点D,若DB=DC,则直线CD的函数表达式为__________.12.如图,已知E是正方形ABCD的边AB上一点,点A关于DE的对称点为F,若正方形ABCD的边长为1,且∠BFC=90°,则AE的长为___13.已知甲乙两车分别从A、B两地出发,相向匀速行驶,已知乙车先出发,1小时后甲车再出发.一段时间后,甲乙两车在休息站C地相遇:到达C地后,乙车不休息继续按原速前往A地,甲车休息半小时后再按原速前往B地,甲车到达B地停止运动;乙车到A地后立刻原速返回B地,已知两车间的距离y(km)随乙车运动的时间x(h)变化如图,则当甲车到达B地时,乙车距离B地的距离为_____(km).14.若是一个完全平方式,则______.15.在甲、乙两名同学中选拔一人参加校园“中华诗词”大赛,在相同的测试条件下,两人5次测试成绩分别是:甲:79,86,82,85,83;乙:88,79,90,81,72;数据波动较小的一同学是_____.16.已知一元二次方程x2-4x-3=0的两根为m,n,则-mn+=.17.把二次根式23化成最简二次根式,则23=18.分解因式:a3﹣2a2+a=________.三、解答题(共66分)19.(10分)如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF.请你猜想:BE与DF有怎样的位置关系和数量关系?并对你的猜想加以证明.20.(6分)如图,在中,,点D.E分别是边AB、BC的中点,过点A作交ED的延长线于点F,连接BF。(1)求证:四边形ACEF是菱形;(2)若四边形AEBF也是菱形,直接写出线段AB与线段AC的关系。21.(6分)如图,DB∥AC,且DB=AC,E是AC的中点,(1)求证:BC=DE;(2)连接AD、BE,若要使四边形DBEA是矩形,则给△ABC添加什么条件,为什么?22.(8分)在图1,图2中,点E是矩形ABCD边AD上的中点,请用无刻度的直尺按下列要求画图(保留画图痕迹,不写画法)(1)在图1中,以BC为一边画△PBC,使△PBC的面积等于矩形ABCD的面积.(2)在图2中,以BE、ED为邻边画▱BEDK.23.(8分)如图,已知菱形ABCD的对角线AC,BD相交于点O,过C作CE⊥AC,交AB的延长线于点E.(1)求证:四边形BECD是平行四边形;(2)若∠E=50°,求∠DAB的度数.24.(8分)如图,城有肥料吨,城有肥料吨,现要把这些肥料全部运往、两乡、从城往、两乡运肥料的费用分别是元/吨和元/吨;从城往、两多运肥料的费用分别是元/吨和元/吨,现乡需要肥料吨,乡需要肥料吨,怎样调运可使总运费最少?25.(10分)先化简代数式,再从-2,2,0三个数中选一个恰当的数作为a的值代入求值.26.(10分)如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF(1)求证:AE=CF;(2)若AB=6,∠COD=60°,求矩形ABCD的面积.

参考答案一、选择题(每小题3分,共30分)1、A【解析】

设a为负整数,将x=a代入得:,将x=-代入得:,故此可知当x互为负倒数时,两分式的和为0,然后求得分式的值即可.【详解】∵将x=a代入得:,将x=-代入得:,∴,当x=0时,=-1,故当x取-2019,-2018,-2017,……,-2,-1,0,1,,,……,,,时,得出分式的值,再将所得结果相加,其和等于:-1.故选A.【点睛】本题主要考查的是数字的变化规律和分式的加减,发现当x的值互为负倒数时,两分式的和为0是解题的关键.2、B【解析】

根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.【详解】∵函数的图象在其象限内y的值随x值的增大而增大,∴m+1<0,解得m<-1.故选B.3、B【解析】

取DC的中点E,连接OE、DE、OD,根据三角形的任意两边之和大于第三边可知当O、E、D三点共线时,点D到点O的距离最大,再根据勾股定理求出DE的长,根据直角三角形斜边上的中线等于斜边的一半求出OE的长,两者相加即可得解.【详解】取中点,连接、、,,.在中,利用勾股定理可得.在中,根据三角形三边关系可知,当、、三点共线时,最大为.故选:.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半得到性质,三角形的三边关系,矩形的性质,勾股定理,根据三角形的三边关系判断出点O、E、D三点共线时,点D到点O的距离最大是解题的关键.4、B【解析】

利用一次函数的性质分别判断后即可确定正确的选项.【详解】解:①∵的图象与y轴的交点在负半轴上,∴a<0,故①错误;②∵的图象从左向右呈下降趋势,∴k<0,故②错误;③两函数图象的交点横坐标为4,当x<4时,在的图象的上方,即y1>y2,故③正确;故选:B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标.利用数形结合是解题的关键.5、B【解析】

欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】、,能构成直角三角形,是整数,故选项错误;、,不能构成直角三角形,故选项正确;、,构成直角三角形,是正整数,故选项错误;、,能构成直角三角形,是整数,故选项错误.故选:.【点睛】此题主要考查了勾股数的定义,熟记勾股数的定义是解题的关键.6、D【解析】

先计算这10名同学各自家庭一个月的节水量的平均数,即样本平均数,然后乘以总数500即可解答.【详解】解:0.5×2+1×3+1.5×4+2×110=1.2(t),

500×1.2=600(t),

答:估计这500名同学的家庭一个月节约的水总量大约是600t;

【点睛】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.007、C【解析】试题分析:先由∠BAC=90°,AD⊥BC,∠B=∠B证得△ABD∽△CBA,再根据相似三角形的性质求得BD的长,即可求得结果.解:∵∠BAC=90°,AD⊥BC,∠B=∠B∴△ABD∽△CBA∴∵AB=2,BC=4∴,解得∴CD=BC-BD=3故选C.考点:相似三角形的判定和性质点评:相似三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.8、B【解析】

分别把选项中的三边平方后,根据勾股定理逆定理即可判断能够构成直角三角形.【详解】解:A选项中,,∴能构成直角三角形;B选项中,,∴不能构成直角三角形;C选项中,,∴能构成直角三角形;D选项中,,∴能构成直角三角形;故选B.【点睛】本题主要考查构成直角三角形的条件,掌握勾股定理的逆定理是解题的关键.9、B【解析】通过几个特殊点就大致知道图像了,P点在AD段时面积为零,在DC段先升,在CB段因为底和高不变所以面积不变,在BA段下降,故选B10、B【解析】

直接利用函数图象判断不等式kx+3>0的解集在x轴上方,进而得出结果.【详解】由一次函数图象可知关于x的不等式kx+3>0的解集是x<2故选B.【点睛】本题考查了一次函数的图象与性质和一元一次不等式及其解法,解题的关键是掌握一次函数与一元一次不等式之间的内在联系.二、填空题(每小题3分,共24分)11、【解析】

试题分析:设直线AB的解析式为y=kx+b,把A(0,1)、点B(1,0)代入,得,解得.∴直线AB的解析式为y=﹣1x+1.将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC时,∵y轴⊥BC∴OB=OC,∴BC=1,因为平移后的图形与原图形平行,故平移以后的函数解析式为:y=﹣1(x+1)+1,即y=-1x-1.12、【解析】

延长EF交CB于M,连接DM,根据正方形的性质得到AD=DC,∠A=∠BCD=90°,由折叠的性质得到∠DFE=∠DFM=90°,通过Rt△DFM≌Rt△DCM,于是得到MF=MC.由等腰三角形的性质得到∠MFC=∠MCF由余角的性质得到∠MFC=∠MBF,于是求得MF=MB,根据勾股定理即可得到结论.【详解】如图,延长EF交CB于M,连接DM,∵四边形ABCD是正方形,∴AD=DC,∠A=∠BCD=90°,∵将△ADE沿直线DE对折得到△DEF,∴∠DFE=∠DFM=90°,在Rt△DFM与Rt△DCM中,,∴Rt△DFM≌Rt△DCM(HL),∴MF=MC,∴∠MFC=∠MCF,∵∠MFC+∠BFM=90°,∠MCF+∠FBM=90°,∴∠MFB=∠MBF,∴MB=MC,∴MF=MC=BM=,设AE=EF=x,∵BE2+BM2=EM2,即(1-x)2+()2=(x+)2,解得:x=,∴AE=,故答案为:.【点睛】本题考查了翻折变换-折叠问题,正方形的性质,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.13、1【解析】

先从图象中获取信息得知A,B两地之间的距离及乙的行驶时间求出乙车的速度,然后再根据两车的相遇时间求出甲的速度,然后求出甲车行完全程的时间,就可以算出此时乙车的行驶时间,用总时间减去甲行完全程时的时间求出乙车剩下的时间,再乘以乙车的速度即可求出路程.【详解】由图象可知,A、B两地相距990千米,而乙来回用时22小时,因此乙车的速度为:990÷(22÷2)=90千米/小时,甲乙两车在C地相遇后,甲休息0.5小时,乙继续走,所以乙车出发7小时后两车相遇,因此甲车速度为:(990﹣90×7)÷(7﹣1)=60千米/小时,甲车行完全程的时间为:990÷60=16.5小时,此时乙车已经行驶16.5+0.5+1=18小时,因此乙车距B地还剩22﹣18=4小时的路程,所以当甲车到达B地时,乙车距离B地的距离为90×4=1千米,故答案为:1.【点睛】本题主要考查一次函数的应用,能够从图象中获取有用信息并掌握行程问题的解法是解题的关键.14、【解析】

根据完全平方公式的结构特征进行判断即可确定出m的值.【详解】∵x2+2mx+1是一个完全平方式,∴m=±1,故答案为:±1.【点睛】本题考查了完全平方式,熟练掌握完全平方式的结构特征是解题的关键.本题易错点在于:是加上或减去两数乘积的2倍,在此有正负两种情况,要全面分析,避免漏解.15、答案为甲【解析】

方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:=83(分),=82(分);经计算知S甲2=6,S乙2=1.S甲2<S乙2,∴甲的平均成绩高于乙,且甲的成绩更稳定,故答案为甲【点睛】本题主要考查平均数、方差等知识,解题的关键是记住:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.16、1【解析】试题分析:由m与n为已知方程的解,利用根与系数的关系求出m+n=4,mn=﹣3,将所求式子利用完全平方公式变形后,即﹣mn+=﹣3mn=16+9=1.故答案为1.考点:根与系数的关系.17、63【解析】

被开方数的分母分子同时乘以3即可.【详解】解:原式=23=故答案为:63【点睛】本题考查化简二次根式,关键是掌握最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,进行化简.18、a(a﹣1)1【解析】试题分析:此多项式有公因式,应先提取公因式a,再对余下的多项式进行观察,有3项,可利用完全平方公式继续分解.a3﹣1a1+a=a(a1﹣1a+1)=a(a﹣1)1.故答案为a(a﹣1)1.考点:提公因式法与公式法的综合运用.三、解答题(共66分)19、BE∥DF,BE=DF,理由见解析【解析】

证明△BCE≌△DAF,得到BE=DF,∠3=∠1,问题得解.【详解】解:猜想:BE∥DF,BE=DF.证明:如图1∵四边形ABCD是平行四边形,∴BC=AD,∠1=∠2,又∵CE=AF,∴△BCE≌△DAF.∴BE=DF,∠3=∠1.∴BE∥DF.【点睛】此题考查了平行四边形的性质、全等三角形的判定与性质.难度适中,注意掌握数形结合思想的应用.20、(1)见解析;(2),.【解析】

(1)由题意得出,DE是的中位线,得出四边形ACEF是平行四边形,再根据点E是边BC的中点得,即可证明.(2)根据菱形的性质,得出,,即可得出,再根据直角三角形斜边的中线得出EC=BC=AC=AE,推出为等边三角形,即可求出.【详解】(1)证明:点D、E分别是边AB、BC的中点,DE是的中位线,,,四边形ACEF是平行四边形,点E是边BC的中点,,,,是菱形.(2)是菱形由(1)知,是菱形又BC=2AC,E为BC的中点AE=BCEC=BC=AC=AE为等边三角形∠C=60°综上,,【点睛】本题考查平行四边形的判定、菱形的判定和性质、三角形中位线定理、含30°角的直角三角形的性质等知识;熟练掌握菱形的判定与性质是解题的关键.21、(1)证明见解析(2)添加AB=BC【解析】试题分析:(1)要证明BC=DE,只要证四边形BCED是平行四边形.通过给出的已知条件便可.(2)矩形的判定方法有多种,可选择利用“对角线相等的平行四边形为矩形”来解决.试题解析:(1)证明:∵E是AC中点,∴EC=AC.∵DB=AC,∴DB∥EC.又∵DB∥EC,∴四边形DBCE是平行四边形.∴BC=DE.(2)添加AB=BC.理由:∵DB∥AE,DB=AE∴四边形DBEA是平行四边形.∵BC=DE,AB=BC,∴AB=DE.∴▭ADBE是矩形.考点:矩形的判定;平行四边形的判定与性质.22、(1)详见解析;(2)详见解析【解析】

(1)连接CE并延长,交BA的延长线于P,根据△APE≌△DCE,可得△PBC面积=矩形ABCD面积;(2)连接矩形ABCD的对角线,交于点O,可得BO=DO,再连接EO并延长,交BC于K,根据△BOK≌△DOE,可得EO=KO,连接DK,即可得到平行四边形BEDK.【详解】解:(1)图1中△PBC为所画;(2)图2中▱BEDK为所画.【点睛】本题主要考查了复杂作图,平行四边形的判定,矩形的性质的运用,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.解题时注意:对角线互相平分的四边形是平行四边形。23、(1)证明见解析;(2)∠DAB=80°.【解析】

直接利用菱形的性质对角线互相垂直,得出,进而得出答案;

利用菱形、平行四边形的性质得出,进而利用三角形内角和定理得出答案.【详解】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,DC∥BE,又∵CE⊥AC,∴BD∥EC,∴四边形BECD是平行四边形;(2)解:∵四边形ABCD是菱形,∴AD=AB,∴∠ADB=∠ABD,∵四边形BECD是平行四边形,∴DB∥CE,∴∠CEA=∠DBA=50°,∴∠ADB=50°,∴∠DAB=180°﹣50°﹣50°=80°.【点睛】此题主要考查了菱形的性质以及平行四边形的性质,正确应用菱形的性质是解题关键.24、从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往的D乡60吨,此时总运费最少,总运费最小值是10040元.【解析】

设总运费为y元,A城运往C乡的肥料量为x吨,则运往D乡的肥

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论