版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,平行四边形ABCD中,AB=4,AD=5,AE平分∠BAD交BC边于点E,则CE的长为()A.1 B.2 C.3 D.42.如图,已知Rt△ABC中,∠ABC=90°,分别以AB、BC、AC为直径作半圆,面积分别记S1,S2,S3,若S1=4,S2=9,则S3的值为()A.13 B.5 C.11 D.33.已知关于x的方程(a﹣3)x|a﹣1|+x﹣1=0是一元二次方程,则a的值是()A.﹣1 B.2 C.﹣1或3 D.34.下列事件中,属于随机事件的是()A.抛出的篮球往下落 B.在只有白球的袋子里摸出一个红球C.购买张彩票,中一等奖 D.地球绕太阳公转5.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)中正确的有A.4个 B.3个 C.2个 D.1个6.方程x2=2x的解是()A.x=2 B.x1=,x2=0 C.x1=2,x2=0 D.x=07.下列所给图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.8.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x个队参赛,根据题意,可列方程为()A. B.C. D.9.下列表达式中是一次函数的是()A. B. C. D.10.下列说法:四边相等的四边形一定是菱形顺次连接矩形各边中点形成的四边形一定是正方形对角线相等的四边形一定是矩形经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有个.A.4 B.3 C.2 D.1二、填空题(每小题3分,共24分)11.如图,二次函数的图象过点A(3,0),对称轴为直线,给出以下结论:①;②;③;④若M(-3,)、N(6,)为函数图象上的两点,则,其中正确的是____________.(只要填序号)12.如图,在平行四边形中,对角线、相交于点,若,,sin∠BDC=,则平行四边形的面积是__________.13.如图,一次函数y=ax+b的图象经过A(2,0)、B(0,﹣1)两点,则关于x的不等式ax+b<0的解集是_____.14.已知A、B两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A地到B地匀速前行,甲、乙行进的路程s与x(小时)的函数图象如图所示.(1)乙比甲晚出发___小时;(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,x的取值范围是___.15.如图,一根橡皮筋放置在x轴上,固定两端A和B,其中A点坐标(0,0),B点坐标(8,0),然后把中点C向上拉升3cm到D,则橡皮筋被拉长了_________cm.16.一个多边形的每个外角都是,则这个多边形的边数是________.17.如图,是将绕点顺时针旋转得到的.若点,,在同一条直线上,则的度数是______.18.抛物线,当随的增大而减小时的取值范围为______.三、解答题(共66分)19.(10分)菱形ABCD中,∠BAD=60°,BD是对角线,点E、F分别是边AB、AD上两个点,且满足AE=DF,连接BF与DE相交于点G.(1)如图1,求∠BGD的度数;(2)如图2,作CH⊥BG于H点,求证:2GH=GB+DG;(3)在满足(2)的条件下,且点H在菱形内部,若GB=6,CH=4,求菱形ABCD的面积.20.(6分)暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.(1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y与x的函数关系式;(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.21.(6分)图①,图②均是的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1,点A在格点上.试在网格中画出顶点在格点上,面积为6,且符合相应条件的图形.(1)在图①中,画出以点A为顶点的非特殊的平行四边形.(2)在图②中,画出以点A为对角线交点的非特殊的平行四边形.22.(8分)如图,正方形ABCD和正方形CEFC中,点D在CG上,BC=1,CE=3,H是AF的中点,EH与CF交于点O.(1)求证:HC=HF.(2)求HE的长.23.(8分)如图,已知菱形ABCD边长为4,,点E从点A出发沿着AD、DC方向运动,同时点F从点D出发以相同的速度沿着DC、CB的方向运动.如图1,当点E在AD上时,连接BE、BF,试探究BE与BF的数量关系,并证明你的结论;在的前提下,求EF的最小值和此时的面积;当点E运动到DC边上时,如图2,连接BE、DF,交点为点M,连接AM,则大小是否变化?请说明理由.24.(8分)在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.25.(10分)如图,在平面直角坐标系中,已知的三个顶点坐标分别是,,.(1)先作出,再将向下平移5个单位长度后得到,请画出,;(2)将绕原点逆时针旋转90°后得得到,请画出;(3)判断以,,为顶点的三角形的形状.(无需说明理由)26.(10分)如图,在中,点,分别在,上,且,连结、.求证:.
参考答案一、选择题(每小题3分,共30分)1、A【解析】
由平行四边形的性质得出BC=AD=5,AD∥BC,得出∠DAE=∠BEA,证出∠BEA=∠BAE,得出BE=AB,即可得出CE的长.【详解】解:∵四边形ABCD是平行四边形,∴BC=AD=5,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=4,∴CE=BC-BE=1;故选:A.【点睛】此题考查平行四边形的性质,等腰三角形的判定,熟练掌握平行四边形的性质,并能进行推理计算是解题的关键.2、A【解析】
由扇形的面积公式可知S1=•π•AC2,S2=•π•BC2,S3=•π•AB2,在Rt△ABC中,由勾股定理得AC2+BC2=AB2,即S1+S2=S3;【详解】解:∵S1=•π•AC2,S2=•π•BC2,S3=•π•AB2,在Rt△ABC中,由勾股定理得AC2+BC2=AB2,即S1+S2=S3;∵S1=4,S2=9,∴S3=1.故选A.【点睛】本题考查勾股定理的应用,难度适中,解题关键是对勾股定理的熟练掌握及灵活运用,记住S1+S2=S3.3、A【解析】
根据一元二次方程定义可得a-3≠0,|a-1|=2,再解即可.【详解】由题意得:a-3≠0,|a-1|=2,解得:a=-1,故选A.【点睛】此题主要考查了一元二次方程定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.4、C【解析】
随机事件就是可能发生,也可能不发生的事件,根据定义即可判断.【详解】A.抛出的篮球会落下是必然事件,故本选项错误;B.从装有白球的袋里摸出红球,是不可能事件,故本选项错误;C.购买10张彩票,中一等奖是随机事件,故本选正确。D.地球绕太阳公转,是必然事件,故本选项错误;故选:C.【点睛】本题考查随机事件,熟练掌握随机事件的定义是解题关键.5、B【解析】
根据正方形的性质得AB=AD=DC,∠BAD=∠D=90°,则由CE=DF易得AF=DE,根据“SAS”可判断△ABF≌△DAE,所以AE=BF;根据全等的性质得∠ABF=∠EAD,
利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,则AE⊥BF;连结BE,BE>BC,BA≠BE,而BO⊥AE,根据垂直平分线的性质得到OA≠OE;最后根据△ABF≌△DAE得S△ABF=S△DAE,则S△ABF-S△AOF=S△DAE-S△AOF,即S△AOB=S四边形DEOF.【详解】解:∵四边形ABCD为正方形,
∴AB=AD=DC,∠BAD=∠D=90°,
而CE=DF,
∴AF=DE,
在△ABF和△DAE中
∴△ABF≌△DAE,
∴AE=BF,所以(1)正确;
∴∠ABF=∠EAD,
而∠EAD+∠EAB=90°,
∴∠ABF+∠EAB=90°,
∴∠AOB=90°,
∴AE⊥BF,所以(2)正确;
连结BE,
∵BE>BC,
∴BA≠BE,
而BO⊥AE,
∴OA≠OE,所以(3)错误;
∵△ABF≌△DAE,
∴S△ABF=S△DAE,
∴S△ABF-S△AOF=S△DAE-S△AOF,
∴S△AOB=S四边形DEOF,所以(4)正确.
故选B.【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了正方形的性质.6、C【解析】
先移项得到x1-1x=0,再把方程左边进行因式分解得到x(x-1)=0,方程转化为两个一元一次方程:x=0或x-1=0,即可得到原方程的解为x1=0,x1=1.【详解】解:∵x1-1x=0,∴x(x-1)=0,∴x=0或x-1=0,∴x1=0,x1=1.故答案为x1=0,x1=1.7、D【解析】
结合中心对称图形和轴对称图形的概念求解即可.【详解】解:A、是轴对称图形,不是中心对称图形.故本选项错误;B、不是轴对称图形,是中心对称图形.故本选项错误;C、是轴对称图形,不是中心对称图形.故本选项错误;D、既是中心对称图形,又是轴对称图形.故本选项正确;
故选:D.【点睛】本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、A【解析】
共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.【详解】解:设有x个队参赛,根据题意,可列方程为:x(x﹣1)=36,故选:A.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系.9、B【解析】
根据一次函数解析式的结构特征可知,其自变量的最高次数为1、系数不为零,常数项为任意实数,即可解答【详解】A.是反比例函数,故本选项错误;B.符合一次函数的定义,故本选项正确;C.是二次函数,故本选项错误;D.等式中含有根号,故本选项错误.故选B【点睛】此题考查一次函数的定义,解题关键在于掌握其定义10、C【解析】
∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C.考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.二、填空题(每小题3分,共24分)11、①②③【解析】
①根据函数图像的开口、对称轴以及与y轴的交点可得出a、b、c的正负,即可判断正误;②根据函数对称轴可得出a、b之间的等量关系,将转化为,再由函数与x轴的交点关于对称轴对称,可得出另一个交点是(-1,0),即可得出的结果,即可判断正误;③根据a、b之间的等量关系,将不等式中的b代换成a,化简不等式即可判断正误;④根据开口向下的函数有最大值,距离顶点越近的函数值越大,先判断M、N距离顶点的距离即可判断两个点y值得大小.【详解】解:①∵函数开口向下,∴,∵对称轴,,∴;∵函数与y轴交点在y轴上半轴,∴,∴;所以①正确;②∵函数对称轴为,∴,∴,∵A(3,0)是函数与x轴交点,对称轴为,∴函数与x轴另一交点为(-1,0);∵当时,,∴,②正确;③∵函数对称轴为,∴,∴将带入可化为:,∵,不等式左右两边同除a需要不等号变方向,可得:,即,此不等式一定成立,所以③正确;④M(-3,)、N(6,)为函数图象上的两点,∵点M距离顶点4个单位长度,N点距离顶点5个单位长度,函数开口向下,距离顶点越近,函数值越大,∴,所以④错误.故答案为①②③.【点睛】本题考查二次函数图像与系数的关系,可通过开口判断a的正负,再根据对称轴可判断a、b的关系,即“左同右异”,根据函数与y轴交点的正负可判断c的正负;根据对称轴的具体值可得出a、b之间的等量关系;在比较函数值大小的时候,开口向下的二次函数上的点距离顶点越近,函数值越大即可判断函数值大小.12、1【解析】
作CE⊥BD,利用三角函数求出CE,即可算出△BCD的面积,从而得出平行四边形ABCD的面积.【详解】如图所示,过点C作CE⊥BD交BD于E,∵CD=AB=4,sin∠BDC=,∴CE=,∴S△BCD=,∴S平行四边形ABCD=2S△BCD=1.故答案为:1.【点睛】本题考查三角函数与几何的应用,关键在于通过三角函数求出高.13、x<1.【解析】
根据一次函数与一元一次不等式的关系即可直接得出答案.【详解】由一次函数y=ax+b的图象经过A(1,0)、B(0,﹣1)两点,根据图象可知:x的不等式ax+b<0的解集是x<1,故答案为:x<1.【点睛】本题主要考查一次函数和一元一次不等式的知识点,解答本题的关键是进行数形结合,此题比较简单.14、2,0≤x≤2或≤x≤2.【解析】
(2)由图象直接可得答案;(2)根据图象求出甲乙的函数解析式,再求出方程组的解集即可解答【详解】(2)由函数图象可知,乙比甲晚出发2小时.故答案为2.(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,有两种情况:一是甲出发,乙还未出发时:此时0≤x≤2;二是乙追上甲后,直至乙到达终点时:设甲的函数解析式为:y=kx,由图象可知,(4,20)在函数图象上,代入得:20=4k,∴k=5,∴甲的函数解析式为:y=5x①设乙的函数解析式为:y=k′x+b,将坐标(2,0),(2,20)代入得:,解得,∴乙的函数解析式为:y=20x﹣20②由①②得,∴,故≤x≤2符合题意.故答案为0≤x≤2或≤x≤2.【点睛】此题考查函数的图象和二元一次方程组的解,解题关键在于看懂图中数据15、1【解析】
根据勾股定理,可求出AD、BD的长,则AD+BD-AB即为橡皮筋拉长的距离.【详解】Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5(cm);∴AD+BD-AB=1AD-AB=10-8=1cm;故橡皮筋被拉长了1cm.
故答案是:1.【点睛】此题主要考查了等腰三角形的性质以及勾股定理的应用,解题的关键是理解题意,灵活运用所学知识解决问题.16、【解析】
正多边形的外角和是360°,而每个外角是18°,即可求得外角和中外角的个数,即多边形的边数.【详解】设多边形边数为n,于是有18°×n=360°,解得n=20.即这个多边形的边数是20.【点睛】本题考查多边形内角和外角,熟练掌握多边形的性质及计算法则是解题关键.17、【解析】
根据旋转的性质,即可求出的度数.【详解】旋转,,,,.故答案为:.【点睛】本题考查了三角形的旋转问题,掌握旋转的性质是解题的关键.18、(也可以)【解析】
先确定抛物线的开口方向和对称轴,即可确定答案.【详解】解:∵的对称轴为x=1且开口向上∴随的增大而减小时的取值范围为(也可以)【点睛】本题主要考查了二次函数增减性中的自变量的取值范围,其中确定抛物线的开口方向和对称轴是解答本题的关键.三、解答题(共66分)19、(1)∠BGD=120°;(2)见解析;(3)S四边形ABCD=26.【解析】
(1)只要证明△DAE≌△BDF,推出∠ADE=∠DBF,由∠EGB=∠GDB+∠GBD=∠GDB+∠ADE=60°,推出∠BGD=180°-∠BGE=120°;
(2)如图3中,延长GE到M,使得GM=GB,连接BD、CG.由△MBD≌△GBC,推出DM=GC,∠M=∠CGB=60°,由CH⊥BG,推出∠GCH=30°,推出CG=2GH,由CG=DM=DG+GM=DG+GB,即可证明2GH=DG+GB;
(3)解直角三角形求出BC即可解决问题;【详解】(1)解:如图1﹣1中,∵四边形ABCD是菱形,∴AD=AB,∵∠A=60°,∴△ABD是等边三角形,∴AB=DB,∠A=∠FDB=60°,在△DAE和△BDF中,,∴△DAE≌△BDF,∴∠ADE=∠DBF,∵∠EGB=∠GDB+∠GBD=∠GDB+∠ADE=60°,∴∠BGD=180°﹣∠BGE=120°.(2)证明:如图1﹣2中,延长GE到M,使得GM=GB,连接CG.∵∠MGB=60°,GM=GB,∴△GMB是等边三角形,∴∠MBG=∠DBC=60°,∴∠MBD=∠GBC,在△MBD和△GBC中,,∴△MBD≌△GBC,∴DM=GC,∠M=∠CGB=60°,∵CH⊥BG,∴∠GCH=30°,∴CG=2GH,∵CG=DM=DG+GM=DG+GB,∴2GH=DG+GB.(3)如图1﹣2中,由(2)可知,在Rt△CGH中,CH=4,∠GCH=30°,∴tan30°=,∴GH=4,∵BG=6,∴BH=2,在Rt△BCH中,BC=,∵△ABD,△BDC都是等边三角形,∴S四边形ABCD=2•S△BCD=2××()2=26.【点睛】本题考查菱形的性质、等边三角形的判定和性质、全等三角形的判定和性质,直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.20、(1)设y=kx+b,当x=0时,y=2,当x=150时,y=1.∴150k+b=1b="2"解得∴y=x+2.(2)当x=400时,y=×400+2=5>3.∴他们能在汽车报警前回到家.【解析】(1)先设出一次函数关系式,再根据待定系数法即可求得函数关系式;(2)把x=400代入一次函数关系式计算出y的值即可得到结果.21、(1)见解析;(2)见解析.【解析】
(1)画出底为3,高为2的平行四边形ABCD即可.
(2)利用数形结合的思想解决问题即可.【详解】解:(1)如图,平行四边形ABCD即为所求.
(2)如图,平行四边形EFGH即为所求.图①图②【点睛】本题考查作图-应用与设计,平行四边形的判定和性质等知识,解题的关键是学会题数形结合的思想思考问题.22、(1)见解析;(2)HE=22【解析】
(1)利用直角三角形斜边上的中线等于斜边的一半求解即可;(2)分别求得HO和OE的长后即可求得HE的长.【详解】(1)证明:∵AC、CF分别是正方形ABCD和正方形CGFE的对角线,∴∠ACD=∠GCF=45°,∴∠ACF=90°,又∵H是AF的中点,∴CH=HF;(2)∵CH=HF,EC=EF,∴点H和点E都在线段CF的中垂线上,∴HE是CF的中垂线,∴点H和点O是线段AF和CF的中点,∴OH=12AC在Rt△ACD和Rt△CEF中,AD=DC=1,CE=EF=3,∴AC=2,∴CF=32,又OE是等腰直角△CEF斜边上的高,∴OE=32∴HE=HO+OE=22;【点睛】本题考查了正方形的性质,直角三角形斜边上的中线,三角形中位线,垂直平分线,勾股定理,解题的关键是根据题干与图形中角和边的关系,找到解决问题的条件.23、,证明见解析;的最小值是,;如图3,当点E运动到DC边上时,大小不发生变化,理由见解析.【解析】
先证明和是等边三角形,再证明≌,可得结论;由≌,易证得是正三角形,继而可得当动点E运动到当,即E为AD的中点时,BE的最小,根据等边三角形三线合一的性质可得BE和EF的长,并求此时的面积;同理得:≌,则可得,所以,则A、B、M、D四点共圆,可得.【详解】,证明:、F的速度相同,且同时运动,,又四边形ABCD是菱形,,,,是等边三角形,同理也是等边三角形,,在和中,,≌,;由得:≌,,,,是等边三角形,,如图2,当动点E运动到,即E为AD的中点时,BE的最小,此时EF最小,,,,的最小值是,中,,,,,;如图3,当点E运动到DC边上时,大小不发生变化,在和中,,≌,,,,,,,、B、M、D四点共圆,.【点睛】此题是四边形的综合题,考查了菱形的性质、等边三角形的判定与性质、四点共圆的判定和性质、垂线段最短以及全等三角形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重庆电讯职业学院《班主任著作研读》2023-2024学年第一学期期末试卷
- 浙江中医药大学《数字摄影测量》2023-2024学年第一学期期末试卷
- 浙江建设职业技术学院《TIA技术及应用》2023-2024学年第一学期期末试卷
- 郑州工业应用技术学院《钢结构设计概述》2023-2024学年第一学期期末试卷
- 小学通风和消毒制度
- 情境剧本创作技巧及其作用
- DB2201T 66.3-2024 肉牛牛舍建设规范 第3部分:种母牛
- 生物学基础与方法模板
- 人资行政战略展望模板
- 七夕传媒策略研讨
- 2024年日语培训机构市场供需现状及投资战略研究报告
- 2024年公安机关理论考试题库附参考答案(基础题)
- 历史-广东省大湾区2025届高三第一次模拟试卷和答案
- 2024年安全生产法律、法规、标准及其他要求清单
- 2023年高考文言文阅读设题特点及备考策略
- 抗心律失常药物临床应用中国专家共识
- 考级代理合同范文大全
- 2024解析:第三章物态变化-讲核心(原卷版)
- DB32T 1590-2010 钢管塑料大棚(单体)通 用技术要求
- 安全行车知识培训
- 2024年安徽省高校分类对口招生考试数学试卷真题
评论
0/150
提交评论