广东省深圳市南山区2022-2023学年数学八下期末学业水平测试试题含解析_第1页
广东省深圳市南山区2022-2023学年数学八下期末学业水平测试试题含解析_第2页
广东省深圳市南山区2022-2023学年数学八下期末学业水平测试试题含解析_第3页
广东省深圳市南山区2022-2023学年数学八下期末学业水平测试试题含解析_第4页
广东省深圳市南山区2022-2023学年数学八下期末学业水平测试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.以下调查中,适宜全面调查的是()A.调查某批次汽车的抗撞击能力 B.调查某班学生的身高情况C.调查春节联欢晚会的收视率 D.调查济宁市居民日平均用水量2.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b<2x的解集为()A. B. C. D.3.如图,已知△ABC,任取一点O,连AO,BO,CO,分别取点D,E,F,使OD=AO,OE=BO,OF=CO,得△DEF,有下列说法:①△ABC与△DEF是位似图形;②△ABC与△DEF是相似图形;③△DEF与△ABC的周长比为1:3;④△DEF与△ABC的面积比为1:1.则正确的个数是()A.1 B.2 C.3 D.44.下列式子正确的是(

)A.若,则x<y B.若bx>by,则x>yC.若,则x=y D.若mx=my,则x=y5.一蓄水池有水40m3,按一定的速度放水,水池里的水量y(m3)与放水时间t(分)有如下关系:放水时间(分)1234...水池中水量(m)38363432...下列结论中正确的是A.y随t的增加而增大 B.放水时间为15分钟时,水池中水量为8m3C.每分钟的放水量是2m3 D.y与t之间的关系式为y=38-2t6.如图,在平行四边形ABCD中,,,AC,BD相交于点O,,交AD于点E,则的周长为A.20cm B.18cm C.16cm D.10cm7.下列命题中的假命题是()A.过直线外一点有且只有一条直线与这条直线平行B.平行于同一直线的两条直线平行C.直线y=2x﹣1与直线y=2x+3一定互相平行D.如果两个角的两边分别平行,那么这两个角相等8.在平行四边形ABCD中,∠A:∠B:∠C:∠D的可能情况是()A.2:7:2:7 B.2:2:7:7 C.2:7:7:2 D.2:3:4:59.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.40cm B.30cm C.20cm D.10cm10.把函数向上平移3个单位,下列在该平移后的直线上的点是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1、S2、S3,且S1=5,S2=6,则AB的长为_____.12.某学校将开启“大阅读”活动,为了充实书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去699元;语文组购买了A、B两种文学书籍若干本,用去6138元,已知A、B的数量分别与甲、乙的数量相等,且甲种书与B种书的单价相同,乙种书与A种书的单价相同,若甲种书的单价比乙种书的单价多7元,则乙种书籍比甲种书籍多买了_____本..13.某种商品的进价为400元,出售时标价为500元,商店准备打折出售,但要保持利润率不低于10%,则至多可以打_____折.14.某班30名学生的身高情况如下表:身高(m)1.451.481.501.531.561.60人数256854则这30名学生的身高的众数是______.15.关于的方程有两个整数根,则整数____________.16.若关于若关于x的分式方程2x-ax-117.如图,已知E是正方形ABCD的边AB上一点,点A关于DE的对称点为F,若正方形ABCD的边长为1,且∠BFC=90°,则AE的长为___18.因式分解:.三、解答题(共66分)19.(10分)如图1,将边长为1的正方形ABCD压扁为边长为1的菱形ABCD.在菱形ABCD中,∠A的大小为α,面积记为S.(1)请补全下表:30°45°60°90°120°135°150°S1(2)填空:由(1)可以发现正方形在压扁的过程中,菱形的面积随着∠A大小的变化而变化,不妨把菱形的面积S记为S(α).例如:当α=30°时,;当α=135°时,.由上表可以得到(______°);(______°),…,由此可以归纳出.(3)两块相同的等腰直角三角板按如图的方式放置,AD=,∠AOB=α,试探究图中两个带阴影的三角形面积是否相等,并说明理由(注:可以利用(2)中的结论).20.(6分)如图,点E,F为▱ABCD的对角线BD上的两点,连接AE,CF,∠AEB=∠CFD.求证:AE=CF.21.(6分)直线与轴轴分别交于点A和点B,M是OB上一点,若将△ABM沿AM折叠,点B恰好落在轴上的点B′处,试求出直线AM的解析式.22.(8分)如图,在平面直角坐标系xOy中,已知正比例函数与一次函数的图像交于点A,(1)求点A的坐标;(2)设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交和的图像于点B、C,连接OC,若BC=OA,求△OBC的面积.23.(8分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上,试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形(1)以A为顶点的平行四边形;(2)以A为对角线交点的平行四边形.24.(8分)如图,点E在正方形ABCD内,且∠AEB=90°,AB=10,BE=8,求阴影部分的面积.25.(10分)某市计划修建一条长60千米的地铁,根据甲,乙两个地铁修建公司标书数据发现:甲,乙两公司每天修建地铁长度之比为3:5;甲公司单独完成此项工程比乙公司单独完成此项工程要多用240天.(1)求甲,乙两个公司每天分别修建地铁多少千米?(2)该市规定:“该工程由甲,乙两个公司轮流施工完成,工期不超过450天,且甲公司工作天数不少于乙公司工作天数的”.设甲公司工作a天,乙公司工作b天.①请求出b与a的函数关系式及a的取值范围;②设完成此项工程的工期为W天,请求出W的最小值.26.(10分)△ABC在平面直角坐标系中的位置如图所示.(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;(3)观察△A1B1C1和△A2B2C2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、调查某批次汽车的抗撞击能力,适合抽样调查,故A选项错误;B、调查某班学生的身高情况,适合全面调查,故B选项正确;C、调查春节联欢晚会的收视率,适合抽样调查,故C选项错误;D、调查济宁市居民日平均用水量,适于抽样调查,故D选项错误.故选:B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2、A【解析】

先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当x>1时,直线y=1x都在直线y=kx+b的上方,当x<1时,直线y=kx+b在x轴上方,于是可得到不等式0<kx+b<1x的解集.【详解】设A点坐标为(x,1),把A(x,1)代入y=1x,得1x=1,解得x=1,则A点坐标为(1,1),所以当x>1时,1x>kx+b,∵函数y=kx+b(k≠0)的图象经过点B(1,0),∴x<1时,kx+b>0,∴不等式0<kx+b<1x的解集为1<x<1.故选:A.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.3、C【解析】

直接利用位似图形的性质以及相似图形的性质分别分析得出答案.【详解】解:∵任取一点O,连AO,BO,CO,分别取点D,E,F,OD=AO,OE=BO,OF=CO,∴△DEF与△ABC的相似比为:1:3,∴①△ABC与△DEF是位似图形,正确;②△ABC与△DEF是相似图形,正确;③△DEF与△ABC的周长比为1:3,正确;④△DEF与△ABC的面积比为1:9,故此选项错误.故选:C.【点睛】此题主要考查位似图形的性质,解题的关键是熟知位似的特点.4、C【解析】A选项错误,,若a>0,则x<y;若a<0,则x>y;B选项错误,bx>by,若b>0,则x>y;若b<0,则x<y;C选项正确;D选项错误,当m=0时,x可能不等于y.故选C.点睛:遇到等式或者不等式判断正误,可以采用取特殊值代入的方法.5、C【解析】

根据表格内的数据,利用待定系数法求出y与t之间的函数关系式,由此可得出D选项错误;由-2<0可得出y随t的增大而减小,A选项错误;代入t=15求出y值,由此可得出:放水时间为15分钟时,水池中水量为10m3,B选项错误;由k=-2可得出每分钟的放水量是2m3,C选项正确.综上即可得出结论.【详解】解:设y与t之间的函数关系式为y=kt+b,

将(1,38)、(2,36)代入y=kt+b,,解得:∴y与t之间的函数关系式为y=-2t+40,D选项错误;

∵-2<0,

∴y随t的增大而减小,A选项错误;

当t=15时,y=-2×15+40=10,

∴放水时间为15分钟时,水池中水量为10m3,B选项错误;

∵k=-2,

∴每分钟的放水量是2m3,C选项正确.

故选:C.【点睛】本题考查一次函数的应用,利用待定系数法求出函数关系式是解题的关键.6、A【解析】

根据平行四边形对角线互相平分可知点O是BD中点,继而可判断出EO是BD的中垂线,得出BE=ED,从而可得出△ABE的周长=AB+AD,即可得出答案.【详解】∵四边形ABCD是平行四边形,AC、BD交于点O,∴BO=DO,由∵EO⊥BD,∴EO是线段BD的中垂线,∴BE=ED,故可得△ABE的周长=AB+AD=20cm,故选A.【点睛】本题考查了平行四边形的性质以及中垂线的判定及性质等,正确得出BE=ED是解题关键.7、D【解析】

根据平行公理即可判断A、根据两直线平行的判定可以判定B、C;根据平行线的性质即可判定D.【详解】A.过直线外一点有且只有一条直线与这条直线平行,正确.B.平行于同一直线的两条直线平行,正确;C.直线y=2x−1与直线y=2x+3一定互相平行,正确;D.如果两个角的两边分别平行,那么这两个角相等,错误;应该是如果两个角的两边分别平行,那么这两个角相等或互补;故选D.【点睛】本题考查的知识点是命题与定理,解题关键是通过举反例证明命题的正确性.8、A【解析】

由四边形ABCD是平行四边形,根据平行四边形的对角相等,即可求得答案.【详解】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∴∠A:∠B:∠C:∠D的可能情况是2:1:2:1.故选:A.【点睛】此题考查了平行四边形的性质.此题比较简单,注意掌握平行四边形的对角相等定理的应用.9、A【解析】

由菱形的性质得∠AOB=90°,根据直角三角形斜边上的中线等于斜边的一半得AB=2OM,从而可求出菱形的周长.【详解】∵四边形ABCD是菱形,∴∠AOB=90°,∵M是AB边的中点,∴AB=2OM=10,∴菱形ABCD的周长为10×4=1.故选A.【点睛】本题考查了菱形的性质,直角三角形斜边中线的性质,熟练掌握菱形的对角线互相垂直,直角三角形斜边中线等于斜边的一半是解答本题的关键.菱形的性质有:具有平行四边形的性质;菱形的四条边相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有两条对称轴.10、D【解析】【分析】根据直线平移的规律得到平移后的直线解析式,然后把x=2代入平移后的解析式即可作出判断.【详解】由“上加下减”的原则可知,将直线y=x向上平移3个单位后,所得直线的表达式是y=x+3,当x=2时,y=x+3=2+3=5,所以点(2,5)在平移后的直线上,故选D.【点睛】本题考查了一次函数的平移以及一次函数图象上点的坐标特征,熟知函数图象平移的法则是解答此题的关键.二、填空题(每小题3分,共24分)11、【解析】

根据勾股定理得出S2+S1=S3,求出S3,即可求出AB.【详解】解:∵由勾股定理得:AC2+BC2=AB2,∴S2+S1=S3,∵S1=5,S2=6,∴S3=11,∴AB=,故答案为:.【点睛】本题考查了勾股定理和正方形的性质,能求出S3的值是解此题的关键.12、【解析】

设乙种书籍的单价为每本元,A购买了本,B购买了本,然后分别表示甲的单价,A,B的单价,列方程组利用两方程相减求解即可.【详解】解:设乙种书籍的单价为每本元,则甲种书籍的单价为元,A种书籍的单价为每本元,B种书籍的单价为元,设A购买了本,B购买了本,则甲购买了本,乙购买了本,所以:②-①得:所以:,所以:.所以:乙比甲多买了本.故答案为:.【点睛】本题考查的是方程组的应用,利用加减法消元找到整体的值是解题关键.13、1.1.【解析】

设打x折,则售价是500×元.根据利润率不低于10%就可以列出不等式,求出x的范围.【详解】解:要保持利润率不低于10%,设可打x折.

则500×-400≥400×10%,

解得x≥1.1.

故答案是:1.1.【点睛】本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.14、1.1.【解析】

根据众数的定义,即出现次数最多的【详解】在这一组数据中1.1出现了8次,次数最多,故众数是1.1.故答案为1.1.【点睛】此题考查众数,难度不大15、【解析】

先计算判别式得到∆=,根据方程有两个整数根确定∆必为完全平方数,由此得到整数k的值.【详解】由题意得∆=,∵方程有两个整数根,∴∆必为完全平方数,而k是整数,∴k-8=0,∴k=8,故答案为:8.【点睛】此题考查一元二次方程的根的判别式,完全平方公式,正确理解题意是解题的关键.16、a>1且a≠2【解析】

分式方程去分母得:2x﹣a=x﹣1,解得:x=a﹣1,根据题意得:a﹣1>0,解得:a>1.又当x=1时,分式方程无意义,∴把x=1代入x=a﹣1得a=2.∴要使分式方程有意义,a≠2.∴a的取值范围是a>1且a≠2.17、【解析】

延长EF交CB于M,连接DM,根据正方形的性质得到AD=DC,∠A=∠BCD=90°,由折叠的性质得到∠DFE=∠DFM=90°,通过Rt△DFM≌Rt△DCM,于是得到MF=MC.由等腰三角形的性质得到∠MFC=∠MCF由余角的性质得到∠MFC=∠MBF,于是求得MF=MB,根据勾股定理即可得到结论.【详解】如图,延长EF交CB于M,连接DM,∵四边形ABCD是正方形,∴AD=DC,∠A=∠BCD=90°,∵将△ADE沿直线DE对折得到△DEF,∴∠DFE=∠DFM=90°,在Rt△DFM与Rt△DCM中,,∴Rt△DFM≌Rt△DCM(HL),∴MF=MC,∴∠MFC=∠MCF,∵∠MFC+∠BFM=90°,∠MCF+∠FBM=90°,∴∠MFB=∠MBF,∴MB=MC,∴MF=MC=BM=,设AE=EF=x,∵BE2+BM2=EM2,即(1-x)2+()2=(x+)2,解得:x=,∴AE=,故答案为:.【点睛】本题考查了翻折变换-折叠问题,正方形的性质,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.18、.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式后继续应用平方差公式分解即可:.三、解答题(共66分)19、(1);;;;(2)120;30;α;(3)两个带阴影的三角形面积相等,证明见解析.【解析】分析:(1)过D作DE⊥AB于点E,当α=45°时,可求得DE,从而可求得菱形的面积S,同理可求当α=60°时S的值,当α=120°时,过D作DF⊥AB交BA的延长线于点F,则可求得DF,可求得S的值,同理当α=135°时S的值;(2)根据表中所计算出的S的值,可得出答案;(3)将△ABO沿AB翻折得到菱形AEBO,将△CDO沿CD翻折得到菱形OCFD.利用(2)中的结论,可求得△AOB和△COD的面积,从而可求得结论.详解:(1)当α=45°时,如图1,过D作DE⊥AB于点E,则DE=AD=,∴S=AB•DE=,同理当α=60°时S=,当α=120°时,如图2,过D作DF⊥AB,交BA的延长线于点F,则∠DAE=60°,∴DF=AD=,∴S=AB•DF=,同理当α=150°时,可求得S=,故表中依次填写:;;;;(2)由(1)可知S(60°)=S(120°),S(150°)=S(30°),∴S(180°-α)=S(α)故答案为:120;30;α;(3)两个带阴影的三角形面积相等.证明:如图3将△ABO沿AB翻折得到菱形AMBO,将△CDO沿CD翻折得到菱形OCND.∵∠AOD=∠COB=90°,∴∠COD+∠AOB=180°,∴S△AOB=S菱形AMBO=S(α)S△CDO=S菱形OCND=S(180°-α)由(2)中结论S(α)=S(180°-α)∴S△AOB=S△CDO.点睛:本题为四边形的综合应用,涉及知识点有菱形的性质和面积、解直角三角形及转化思想等.在(1)中求得菱形的高是解题的关键,在(2)中利用好(1)中的结论即可,在(3)中把三角形的面积转化成菱形的面积是解题的关键.本题考查知识点较基础,难度不大.20、详见解析【解析】

由平行四边形的性质得出AB=CD,∠BAE=∠CDF,由AAS证明证得△ABE≌△CDF,继而证得结论.【详解】解:证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).∴AE=CF.【点睛】题考查了平行四边形的性质以及全等三角形的判定与性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.21、y=-0.5x+1【解析】

先确定点A、点B的坐标,再由AB=AB',可得AB'的长度,求出OB'的长度,即可得出点B'的坐标;设OM=m,则B'M=BM=8-m,在Rt△OMB'中利用勾股定理求出m的值,得出M的坐标后,利用待定系数法可求出AM所对应的函数解析式.【详解】解:y=-x+8,令x=0,则y=8,令y=0,则x=6,∴A(6,0),B(0,8),∴OA=6,OB=8AB=10,∵AB'=AB=10,∴OB'=10-6=4,∴B'的坐标为:(-4,0).设OM=m,则B'M=BM=8-m,在Rt△OMB'中,m2+42=(8-m)2,解得:m=1,∴M的坐标为:(0,1),设直线AM的解析式为y=kx+b,则,解得:,故直线AM的解析式为:y=-0.5x+1.【点睛】本题考查了一次函数的综合,涉及了待定系数法求函数解析式、勾股定理及翻折变换的性质,解答本题的关键是数形结合思想的应用,难度一般.22、(1)A(4,3);(2)28.【解析】

(1)点A是正比例函数与一次函数图像的交点坐标,把与联立组成方程组,方程组的解就是点A的横纵坐标;(2)过点A作x轴的垂线,在Rt△OAD中,由勾股定理求得OA的长,再由BC=OA求得OB的长,用点P的横坐标a表示出点B、C的坐标,利用BC的长求得a值,根据即可求得△OBC的面积.【详解】解:(1)由题意得:,解得,∴点A的坐标为(4,3).(2)过点A作x轴的垂线,垂足为D,在Rt△OAD中,由勾股定理得,∴.∵P(a,0),∴B(a,),C(a,-a+7),∴BC=,∴,解得a=8.∴.23、(1)见解析;(2)见解析【解析】

(1)直接利用平行四边形的性质分析得出答案;(2)直接利用菱形的性质得出符合题意的答案.【详解】解:(1)如图所示:平行四边形ABCD即为所求;(2)如图所示:平行四边形DEFM即为所求.【点睛】此题考查应用设计与作图,正确应用网格分析是解题关键

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论