广东省重点中学2022-2023学年数学八年级第二学期期末统考试题含解析_第1页
广东省重点中学2022-2023学年数学八年级第二学期期末统考试题含解析_第2页
广东省重点中学2022-2023学年数学八年级第二学期期末统考试题含解析_第3页
广东省重点中学2022-2023学年数学八年级第二学期期末统考试题含解析_第4页
广东省重点中学2022-2023学年数学八年级第二学期期末统考试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下列平面图形中,是中心对称图形的是()A. B. C. D.2.下列计算正确的是()A.3xy2C.2a23.函数y=中自变量x的取值范围是()A.x>3 B.x<3 C.x≤3 D.x≥﹣34.一个多边形的内角和等于1260°,则从此多边形一个顶点引出的对角线有()A.4条B.5条C.6条D.7条5.如图,在平行四边形ABCD,尺规作图:以点A为圆心,AB的长为半径画弧交AD于点F,分别以点B,F为圆心,以大于BF的长为半径画弧交于点G,做射线AG交BC与点E,若BF=12,AB=10,则AE的长为().A.17 B.16 C.15 D.146.下列函数中,一次函数是()A.y=x B.y=kx C.y=1x7.已知a<b,则下列不等式不成立的是()A.a+2<b+2 B.2a<2b C. D.﹣2a>﹣2b8.在数学拓展课《折叠矩形纸片》上,小林发现折叠矩形纸片ABCD可以进行如下操作:①把△ABF翻折,点B落在C边上的点E处,折痕为AF,点F在BC边上;②把△ADH翻折,点D落在AE边上的点G处,折痕为AH,点H在CD边上,若AD=6,CD=10,则=()A. B. C. D.9.下列调查中,适合采用全面调查(普查)方式的是()A.对巢湖水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.节能灯厂家对一批节能灯管使用寿命的调查D.对某班50名学生视力情况的调查10.已知m=,n=,则代数式的值为()A.3 B.3 C.5 D.9二、填空题(每小题3分,共24分)11.将函数的图象向上平移2个单位,所得的函数图象的解析为________.12.八年级(3)班共有学生50人,如图是该班一次信息技术模拟测试成绩的频数分布直方图(满分为50分,成绩均为整数),若不低于30分为合格,则该班此次成绩达到合格的同学占全班人数的百分比是__________.13.如图,在矩形ABCD中,∠ACB=30°,BC=2,点E是边BC上一动点(点E不与B,C重合),连接AE,AE的中垂线FG分别交AE于点F,交AC于点G,连接DG,GE.设AG=a,则点G到BC边的距离为_____(用含a的代数式表示),ADG的面积的最小值为_____.14.在大课间活动中,体育老师对甲、乙两名同学每人进行10次立定跳远测试,他们的平均成绩相同,方差分别是,则甲、乙两名同学成绩更稳定的是.15.如图,平行四边形ABCD中,AC⊥AB,点E为BC边中点,AD=6,则AE的长为________.16.当x=2时,二次根式的值为________.17.如图,将ABCD的一边BC延长至E,若∠A=110°,则∠1=________.18.如图,在中,为边延长线上一点,且,连结、.若的面积为1,则的面积为____.三、解答题(共66分)19.(10分)如图,在四边形ABCD中,AB∥DC,边AD与BC不平行(1)若∠A=∠B,求证:AD=BC.(2)已知AD=BC,∠A=70°,求∠B的度数.20.(6分)已知关于x的方程(m-1)x-mx+1=0。(1)证明:不论m为何值时,方程总有实数根;(2)若m为整数,当m为何值时,方程有两个不相等的整数根。21.(6分)如图1,在四边形ABCD中,∠ADC=90°,AB=AC.点E、F分别为AC、BC的中点,连结EF、DE.(1)请在图1中找出长度相等的两条线段?并说明理由.(AB=AC除外)(2)如图2,当AC平分∠BAD,∠DEF=90°时,求∠BAD的度数.(3)如图3,四边形CDEF是边长为2的菱形,求S四边形ABCD.22.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=4,∠ABC=60°,求矩形AEFD的面积.23.(8分)在平面直角坐标系xOy中,点P在函数y=4x(x>0)的图象上,过P作直线PA⊥x轴于点A,交直线y=x于点M,过M作直线MB⊥y轴于点B.交函数y=(1)若点P的横坐标为1,写出点P的纵坐标,以及点M的坐标;(2)若点P的横坐标为t,①求点Q的坐标(用含t的式子表示)②直接写出线段PQ的长(用含t的式子表示)24.(8分)如图,在平面直角坐标系中,直线分别交两坐标轴于A、B两点,直线y=-2x+2分别交两坐标轴于C、D两点(1)求A、B、C、D四点的坐标(2)如图1,点E为直线CD上一动点,OF⊥OE交直线AB于点F,求证:OE=OF(3)如图2,直线y=kx+k交x轴于点G,分别交直线AB、CD于N、M两点.若GM=GN,求k的值25.(10分)已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0(1)求证:无论k取何值,这个方程总有实数根;(2)若等腰三角形ABC的一边长a=4,另两边b、c恰好是这个方程的两个根,求△ABC的周长.26.(10分)计算:(1)(2)已知a=+2,b=﹣2,求a2﹣b2的值.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据中心对称图形的概念求解.【详解】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选B.【点睛】本题考查中心对称图形.2、D【解析】

根据分式的计算法则,依次计算各选项后即可进行判断.【详解】A选项:3xyB选项:1a+bC选项:2aD选项:a2故选:D.【点睛】查了分式的加、减、乘、除运算,解题关键是熟记其运算法则.3、B【解析】

解:由题意得,1-x>0,解得x<1.故选:B.【点睛】本题考查函数自变量取值范围.4、C【解析】

这个多边形的内角和是1260°.n边形的内角和是(n-2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】根据题意,得(n-2)•180=1260,解得n=9,∴从此多边形一个顶点引出的对角线有9-3=6条,故选C.【点睛】本题考查了多边形的内角和定理:n边形的内角和为(n-2)×180°.5、B【解析】

根据尺规作图先证明四边形ABEF是菱形,再根据菱形的性质,利用勾股定理即可求解.【详解】由尺规作图的过程可知,直线AE是线段BF的垂直平分线,∠FAE=∠BAE,∴AF=AB,EF=EB,∵AD∥BC,∴∠FAE=∠AEB,∴∠AEB=∠BAE,∴BA=BE,∴BA=BE=AF=FE,∴四边形ABEF是菱形,∴AE⊥BF∵BF=12,AB=10,∴BO=BF=6∴AO=∴AE=2AO=16故选B.【点睛】本题考查的是菱形的判定、复杂尺规作图、勾股定理的应用,掌握菱形的判定定理和性质定理、线段垂直平分线的作法是解题的关键.6、A【解析】

根据一次函数的定义即可判断.【详解】解:A、是一次函数;B、x的系数不是非零常数,故不是一次函数;C、x在分母上,故不是一次函数;D、x的指数为2,故不是一次函数.故选A.【点睛】本题考查了一次函数的定义.7、C【解析】

根据不等式的基本性质对各选项进行逐一分析即可.【详解】A、将a<b两边都加上2可得a+2<b+2,此不等式成立;B、将a<b两边都乘以2可得2a<2b,此不等式成立;C、将a<b两边都除以2可得,此选项不等式不成立;D、将a<b两边都乘以-2可得-2a>-2b,此不等式成立;故选C.【点睛】本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.8、A【解析】

利用翻折不变性可得AE=AB=10,推出DE=8,EC=2,设BF=EF=x,在Rt△EFC中,x2=22+(6-x)2,可得x=,设DH=GH=y,在Rt△EGH中,y2+42=(8-y)2,可得y=3,由此即可解决问题.【详解】∵四边形ABCD是矩形,∴∠C=∠D=90°,AB=CD=10,AD=BC=6,由翻折不变性可知:AB=AE=10,AD=AG=6,BF=EF,DH=HG,∴EG=4,在Rt△ADER中,DE==8,∴EC=10﹣8=2,设BF=EF=x,在Rt△EFC中有:x2=22+(6﹣x)2,∴x=,设DH=GH=y,在Rt△EGH中,y2+42=(8﹣y)2,∴y=3,∴EH=5,∴,故选A.【点睛】本题考查矩形的性质,翻折变换,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.9、D【解析】

根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】、对巢湖水质情况的调查适合抽样调查,故选项错误;、对端午节期间市场上粽子质量情况的调查适合抽样调查,故选项错误;、节能灯厂家对一批节能灯管使用寿命的调查适合抽样调查,故选项错误;、对某班50名学生视力情况的调查,适合全面调查,故选项正确.故选:.【点睛】本题考查了抽样调查和全面调查的区别,选择普遍还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10、B【解析】

由已知可得:,=.【详解】由已知可得:,原式=故选:B【点睛】考核知识点:二次根式运算.配方是关键.二、填空题(每小题3分,共24分)11、【解析】

根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知,将函数y=3x的图象向上平移2个单位所得函数的解析式为.

故答案为:.【点睛】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.12、70%【解析】

利用合格的人数即50-10-5=35人,除以总人数即可求得.【详解】解:该班此次成绩达到合格的同学占全班人数的百分比是×100%=70%.

故答案是:70%.【点睛】本题考查了读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.13、【解析】

先根据直角三角形含30度角的性质和勾股定理得AB=2,AC=4,从而得CG的长,作辅助线,构建矩形ABHM和高线GM,如图2,通过画图发现:当GE⊥BC时,AG最小,即最小,可计算的值,从而得结论.【详解】∵四边形ABCD是矩形,∴∠B=90°,∵∠ACB=30°,BC=2,∴AB=2,AC=4,∵AG=,∴CG=,如图1,过G作MH⊥BC于H,交AD于M,Rt△CGH中,∠ACB=30°,∴GH=CG=,则点G到BC边的距离为,∵HM⊥BC,AD∥BC,∴HM⊥AD,∴∠AMG=90°,∵∠B=∠BHM=90°,∴四边形ABHM是矩形,∴HM=AB=2,∴GM=2﹣GH==,∴S△ADG,当最小时,△ADG的面积最小,如图2,当GE⊥BC时,AG最小,即a最小,∵FG是AE的垂直平分线,∴AG=EG,∴,∴,∴△ADG的面积的最小值为,故答案为:,.【点睛】本题主要考查了垂直平分线的性质、矩形的判定和性质、含30度角的直角三角形的性质以及勾股定理,确定△ADG的面积最小时点G的位置是解答此题的关键.14、乙【解析】试题分析:方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.因此,∵,∴甲、乙两名同学成绩更稳定的是乙.15、1【解析】

由平行四边形的性质得出BC=AD=6,由直角三角形斜边上的中线性质即可得出结果.【详解】∵四边形ABCD是平行四边形,∴BC=AD=6,∵E为BC的中点,AC⊥AB,∴AE=12BC=1故答案为:1.【点睛】本题考查了平行四边形的性质、直角三角形斜边上的中线性质;熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质求出AE是解决问题的关键.16、3【解析】【分析】把x=2代入二次根式进行计算即可得.【详解】把x=2代入得,==3,故答案为:3.【点睛】本题考查了二次根式的值,准确计算是解题的关键.17、70°【解析】

解:∵平行四边形ABCD的∠A=110°,∴∠BCD=∠A=110°,∴∠1=180°-∠BCD=180°-110°=70°.故答案为:70°.18、3【解析】

首先根据平行四边形的性质,可得AD=BC,又由,可得BE=3BC=3AD,和的高相等,即可得出的面积.【详解】解:∵,∴AD=BC,AD∥BC,∴和的高相等,设其高为,又∵,∴BE=3BC=3AD,又∵,∴故答案为3.【点睛】此题主要考查利用平行四边形的性质进行等量转换,即可求得三角形的面积.三、解答题(共66分)19、(1)证明见解析;(2)∠B=70°.【解析】

(1)过C作CE∥AD于点E,可证明四边形ADCE是平行四边形,根据平行四边形的性质可得AD=CE,根据AD∥CE,可得∠A=∠CEB,根据等量代换可得∠CEB=∠B,进而得到CE=BC,从而可得AD=BC;(2)过C作CE∥AD,可证明四边形ADCE是平行四边形,根据平行四边形的性质可得AD=CE,再由条件AD=BC可得CE=BC,根据等边对等角可得∠B=∠CEB,再根据平行线的性质可得∠A=∠CEB,利用等量代换可得∠B=∠A.【详解】(1)证明:过C作CE∥AD于点E,∵AB∥DC,CE∥AD∴四边形ADCE是平行四边形,∴AD=CE,∵AD∥CE,∴∠A=∠CEB,∵∠A=∠B,∴∠CEB=∠B,∴CE=CB,∴AD=CB;(2)过C作CE∥AD于点E,∵AB∥DC,CE∥AD∴四边形ADCE是平行四边形,∴AD=CE,∵AD=BC,∴CE=CB,∴∠B=∠CEB,∵AD∥CE,∴∠A=∠CEB,∴∠B=∠A=70°.【点睛】本题主要考查平行四边形的判定及性质,等腰三角形的性质,掌握平行四边形的性质是解题的关键.20、(1)见解析;(2)m=0【解析】

(1)分该方程为一元二次方程和一元一次方程展开证明即可。(2)利用因式分解解该一元二次方程,求出方程的根,利用整数概念进行求值即可【详解】解:(1)当时,是关于x的一元二次方程。∵不论m为何值时,(m﹣2)2≥0,∴△≥0,∴方程总有实数根;当m=1时,是关于x的一元一次方程。∴-x+1=0∴x=1∴方程有实数根x=1∴不论m为何值时,方程总有实数根(2)分解因式得解得:∵方程有两个不相等的整数根∴为整数,∴且∴m=0【点睛】本题考查了根的判别式,掌握方程与根的关系,及因式分解解一元二次方程,和整数的概念是解题的关键.21、(1)DE=EF,见解析;(2)∠BAD=60°;(3)S四边形ABCD=6.【解析】

(1)利用直角三角形斜边的中线性质和三角形的中位线性质可得结论;(2)先证明∠CEF=∠BAD,∠DEC=∠BAD,根据∠DEF=90°列方程得∠BAD的度数;(3)由四边形CDEF是菱形,说明△CDE是等边三角形,再根据等底同高说明△CDE与△DEA间关系,根据相似说明△CAB与△CEF间关系,由DE=2得AB=4,得等边△DEC的面积,利用三角形的面积间关系得结论.【详解】(1)DE=EF,在△ABC中,点E,F分别为AC,BC的中点,∴EF∥AB,且EF=AB,在Rt△ACD中,点E为AC的中点,∴DE=AC,∵AB=AC,∴DE=EF;(2)∵AC平分∠BAD,EF∥AB,DE=AC=AE=EC,∴∠BAC=∠DAC,∠CEF=∠BAC,∠DEC=2∠DAC=∠BAD,∵∠DEF=90°,∴∠CEF+∠DEC=∠BAC+2∠DAC=90°,∴∠BAC=∠DAC=30°,∴∠BAD=60°;(3)四边形ABCD的面积为:∵四边形CDEF是菱形,EC=DE,∴△CDE与△CEF都是等边三角形,∵EF=DE=CD=CF=2,∴AB=4,∴S△DCE=S△DEA=S△CEF;∵EF∥AB,∴,∴S△ABC=4S△CEF=4∴S四边形ABCD=S△DCE+S△DEA+S△ABC=2×+4=6.【点睛】本题考查了四边形的综合问题,解题的关键是掌握三角形的中位线定理、直角三角形斜边的中线的性质、菱形的性质及等边三角形的面积等知识.题目难度中等,由题目原型到探究再到结论,步步深入,符合认知规律.22、(1)见解析;(2).【解析】

(1)根据已知条件推知四边形AEFD是平行四边形,AE⊥BC,则平行四边形AEFD是矩形;(2)先证明△ABE≌△DCF,得出△ABC是等边三角形,在利用面积公式列式计算即可得解.【详解】(1)证明:∵菱形ABCD∴AD∥BC,AD=BC∵CF=BE∴BC=EF∴AD∥EF,AD=EF∴四边形AEFD是平行四边形∵AE⊥BC∴∠AEF=90°∴平行四边形AEFD是矩形(2)根据题意可知∠ABE=∠DCF,AB=CD,CF=BE∴△ABE≌△DCF(SAS)∴矩形AEFD的面积=菱形ABCD的面积∵∠ABC=60°,∴△ABC是等边三角形AC=4,AO=2,AB=4,由菱形的对角线互相垂直可得BO=矩形AEFD的面积=菱形ABCD的面积=【点睛】此题考查全等三角形的判定与性质,矩形的判定,菱形的性质,解题关键在于先求出AEFD是平行四边形.23、(1)点P的纵坐标为4,点M的坐标为(1,1);(2)①4t,t【解析】

(1)直接将点P的横坐标代入y=4x(x>0)中,得到点P的纵坐标,由点M在PA上,PA⊥x(2)①由点P的横坐标为t,得到M的横坐标为t,因为M在y=x上,得到M的坐标为(t,t),从而得到Q的纵坐标,代入反比例函数解析式即可的到点Q的坐标;②连接PQ,很快就发现PQ是直角三角形PMQ的斜边,直接利用勾股定理即可得到答案.【详解】解:

(1)∵点P在函数y=4x(x>0)的图象上,点P∴y=4∴点P的纵坐标为4,∵点M在PA上,PA⊥x轴,且点P的横坐标为1,∴点M的横坐标为1,又∵点M在直线y=x上,∴点M的坐标为(1,1),故答案为点P的纵坐标为4,点M的坐标为(1,1);(2)①∵点P的横坐标为t,点P在函数y=4∴点P的坐标为t,4∵直线PA⊥x轴,交直线y=x于点M,∴点M的坐标为(t,t),

∵直线MB⊥y轴,交函数y=4x(x>0)的图象于点Q,

∴点Q②连接PQ,∵P的坐标为t,4t,M的坐标为(t,t),Q的坐标为∴PM=4t-t,MQ=∴PQ=PM故答案为线段PQ的长为2t-【点睛】本题考查的知识点是正比例函数的图像和性质,反比例函数的图像和性质,反比例函数的应用,平面直角坐标系中点的坐标,点到坐标及其原点的距离和勾股定理的应用,掌握好正比例函数与反比例函数的点的坐标特征是解题的关键.24、(1),,,;(2)见解析;(3)【解析】

(1)分别针对于直线AB.CD的解析式,令x=0和y=0,解方程即可得出结论;(2)先判断出AO=OD,OB=OC,得出△AOB≌△DOC(SAS)。进而得出∠OAB=∠ODC,再利用同角的余角相等判断出∠AOF=∠BOE,得出△AOF≌△DOE(ASA),即可得出结论;(3)先求出点G的坐标,设出点M、N的坐标,利用中点坐标公式建立方程组求解得出m,n,进而得出点M坐标,代入直线y=kx+k中,即可得出结论.【详解】解:(1)∵∴令x=0,则y=1.∴B(0,1)∵令y=0,则,∴x=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论