![贵州省兴仁县黔龙学校2023年数学八年级第二学期期末教学质量检测模拟试题含解析_第1页](http://file4.renrendoc.com/view/01050f967667c214af6d1325c7ecacb1/01050f967667c214af6d1325c7ecacb11.gif)
![贵州省兴仁县黔龙学校2023年数学八年级第二学期期末教学质量检测模拟试题含解析_第2页](http://file4.renrendoc.com/view/01050f967667c214af6d1325c7ecacb1/01050f967667c214af6d1325c7ecacb12.gif)
![贵州省兴仁县黔龙学校2023年数学八年级第二学期期末教学质量检测模拟试题含解析_第3页](http://file4.renrendoc.com/view/01050f967667c214af6d1325c7ecacb1/01050f967667c214af6d1325c7ecacb13.gif)
![贵州省兴仁县黔龙学校2023年数学八年级第二学期期末教学质量检测模拟试题含解析_第4页](http://file4.renrendoc.com/view/01050f967667c214af6d1325c7ecacb1/01050f967667c214af6d1325c7ecacb14.gif)
![贵州省兴仁县黔龙学校2023年数学八年级第二学期期末教学质量检测模拟试题含解析_第5页](http://file4.renrendoc.com/view/01050f967667c214af6d1325c7ecacb1/01050f967667c214af6d1325c7ecacb15.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.利用反证法证明命题“四边形中至少有一个角是钝角或直角”时,应假设()A.四边形中至多有一个内角是钝角或直角B.四边形中所有内角都是锐角C.四边形的每一个内角都是钝角或直角D.四边形中所有内角都是直角2.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是().A. B.C. D.3.如图,正方形ABCD的边长为2,对角线AC,BD交于点O,E是AC延长线上一点,且CE=CO.则BE的长度为()A.3 B.102 C.5 D.4.如图,在菱形ABCD中,∠BAD=60°,AB=2,E是DC边上一个动点,F是AB边上一点,∠AEF=30°.设DE=x,图中某条线段长为y,y与x满足的函数关系的图象大致如图所示,则这条线段可能是图中的().A.线段EC B.线段AE C.线段EF D.线段BF5.从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AD=CD C.AB=BC D.AC=BD6.函数中自变量x的取值范围是()A.x≥1B.x≤1C.x≠1D.x>17.甲、乙、丙三个旅游团的游客人数都相等,且每个团游客的平均年龄都是35岁,这三个团游客年龄的方差分别是,,,导游小方最喜欢带游客年龄相近的团队,若在这三个团中选择一个,则他应选()A.甲队 B.乙队 C.丙队 D.哪一个都可以8.下列运算正确的是()A. B. C. D.9.下列运算结果正确的是()A.=﹣9 B.=2 C. D.10.下列条件中,不能判定四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.AB∥CD,∠B=∠DC.AB=CD,AD=BC D.AB∥CD,AB=CD二、填空题(每小题3分,共24分)11.若一个多边形的内角和是900º,则这个多边形是边形.12.小明参加岗位应聘中,专业知识、工作经验、仪表形象三项的得分分别为:分、分、分.若这三项的重要性之比为,则他最终得分是_________分.13.如图,在Rt△ABC中,∠B=90°,AB=,BC=3,D、E分别是AB、AC的中点,延长BC至点F,使CF=BC,连接DF、EF,则EF的长为____.14.如图,在四边形ABCD中,AB∥CD,AB=BC=BD=2,AD=1,则AC=__________.15.如图,在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC于点E,点M在DE上,且ME=DM.当AM⊥BM时,则BC的长为____.16.如图,在矩形ABCD中,E、F、G、H分别是四条边的中点,HF=2,EG=4,则四边形EFGH的面积为____________.17.分解因式:2m2-8=_______________.18.直角三角形中,两条直角边长分别为12和5,则斜边上的中线长是________.三、解答题(共66分)19.(10分)如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)求证:四边形ADCF是菱形.20.(6分)问题背景如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.类比探究如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.(2)△DEF是否为正三角形?请说明理由.(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.21.(6分)如图,四边形是正方形,是边所在直线上的点,,且交正方形外角的平分线于点.(1)当点在线段中点时(如图①),易证,不需证明;(2)当点在线段上(如图②)或在线段延长线上(如图③)时,(1)中的结论是否仍然成立?请写出你的猜想,并选择图②或图③的一种结论给予证明.22.(8分)如图,四边形和四边形都是平行四边形.求证:四边形是平行四边形.23.(8分)下图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家.其中x表示时间,y表示小明离他家的距离.根据图象回答下列问题:①菜地离小明家多远?小明走到菜地用了多少时间?②小明给菜地浇水用了多少时间?③玉米地离菜地、小明家多远?小明从玉米地走回家平均速度是多少?24.(8分)计算:(1);(2)(﹣)(+)+(﹣1)225.(10分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的四边形为整点四边形.如图,已知整点A(1,6),请在所给网格区域(含边界)上按要求画整点四边形.(1)在图1中画一个整点四边形ABCD,四边形是轴对称图形,且面积为10;(2)在图2中画一个整点四边形ABCD,四边形是中心对称图形,且有两个顶点各自的横坐标比纵坐标小1.26.(10分)如图,在△ABC中,∠ACB=90°,BC=AC=6,D是AB边上任意一点,连接CD,以CD为直角边向右作等腰直角△CDE,其中∠DCE=90°,CD=CE,连接BE.(1)求证:AD=BE;(2)当△CDE的周长最小时,求CD的值;(3)求证:.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法.【详解】假设命题中的结论不成立,即命题“四边形中至少有一个角是钝角或直角”不成立,即“四边形中的四个角都不是钝角或直角”,即“四边形中的四个角都是锐角”故选B.【点睛】本题考查反证法,要注意命题“至少有一个是”不成立,对应的命题应为“都不是”.2、D【解析】
由图易知两条直线分别经过(1,1)、(0,-1)两点和(0,2)、(1,1)两点,设出两个函数的解析式,然后利用待定系数法求出解析式,再根据所求的解析式写出对应的二元一次方程,然后组成方程组便可解答此题.【详解】由图知,设经过(1,1)、(0,-1)的直线解析式为y=ax+b(a≠0).将(1,1)、(0,-1)两点坐标代入解析式中,解得故过(1,1)、(0,-1)的直线解析式y=2x-1,对应的二元一次方程为2x-y-1=0.设经过(0,2)、(1,1)的直线解析式为y=kx+h(k≠0).将(0,2)、(1,1)两点代入解析式中,解得故过(0,2)、(1,1)的直线解析式为y=-x+2,对应的二元一次方程为x+y-2=0.因此两个函数所对应的二元一次方程组是故选D【点睛】此题考查一次函数与二元一次方程(组),解题关键在于要写出两个函数所对应的二元一次方程组,需先求出两个函数的解析式.3、C【解析】
利用正方形的性质得到OB=OC=22BC=1,OB⊥OC,则OE=2,然后根据勾股定理计算BE【详解】∵正方形ABCD的边长为2,∴OB=OC=22BC=22×2=1,OB⊥∵CE=OC,∴OE=2,在Rt△OBE中,BE=12故选C.【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.4、B【解析】分析:求出当点E与点D重合时,即x=0时EC、AE、EF、BF的长可排除C、D;当点E与点C重合时,即x=2时,求出EC、AE的长可排除A,可得答案.详解:当点E与点D重合时,即x=0时,EC=DC=2,AE=AD=2,∵∠A=60°,∠AEF=30°,∴∠AFD=90°,在Rt△ADF中,∵AD=2,∴AF=AD=1,EF=DF=ADcos∠ADF=,∴BF=AB-AF=1,结合图象可知C、D错误;当点E与点C重合时,即x=2时,如图,连接BD交AC于H,此时EC=0,故A错误;∵四边形ABCD是菱形,∠BAD=60°,∴∠DAC=30°,∴AE=2AH=2ADcos∠DAC=2×2×=2,故B正确.故选:B.点睛:本题主要考查动点问题的函数图象与菱形的性质、解直角三角形的应用,结合函数图象上特殊点的实际意义排除法求解是解此题的关键.5、D【解析】
根据菱形的判定方法结合各选项的条件逐一进行判断即可得.【详解】A、对角线互相垂直的平行四边形是菱形,故A选项不符合题意;B、有一组邻边相等的平行四边形是菱形,故B选项不符合题意;C、有一组邻边相等的平行四边形是菱形,故C选项不符合题意;D、对角线相等的平行四边形是矩形,故D选项符合题意,故选D.【点睛】本题考查了菱形的判定,熟练掌握菱形的判定方法是解答本题的关键.6、A【解析】试题分析:当x+1≥0时,函数有意义,所以x≥1,故选:A.考点:函数自变量的取值范围.7、A【解析】分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.详解:∵S甲2=1.44,S乙2=18.8,S丙2=25,∴S甲2最小,∴他应选甲队;故选A.点睛:本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8、D【解析】
根据二次根式的计算法则对各个选项一一进行计算即可判断出答案.【详解】A.不是同类二次根式,不能合并,故A错误;B.,故B错误;C.,故C错误;D.故D正确.故选D.【点睛】本题考查了二次根式的运算.熟练应用二次根式的计算法则进行正确计算是解题的关键.9、B【解析】
解:因为=9,所以A错误,因为,所以B正确,因为,所以C错误,因为,所以D错误,故选B.10、A【解析】
根据平行四边形的判定定理分别进行分析即可.【详解】解:A.不能判定四边形ABCD是平行四边形,四边形可能是等腰梯形,故此选项符合题意;B.AB∥CD,可得∠A+∠D=180°,因为∠B=∠D,∠A+∠B=180°,所以AD∥BC,根据两组对边分别平行的四边形是平行四边形,可判定四边形ABCD是平行四边形,故此选项不合题意;
C.根据两组对边分别相等的四边形是平行四边形,可判定四边形ABCD是平行四边形,故此选项不合题意;D.根据一组对边平行且相等的四边形是平行四边形,可判定四边形ABCD是平行四边形,故此选项不合题意;
故选:A.【点睛】此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.二、填空题(每小题3分,共24分)11、七【解析】
根据多边形的内角和公式,列式求解即可.【详解】设这个多边形是边形,根据题意得,,解得.故答案为.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.12、15.1【解析】
根据加权平均数的计算公式列出算式,再进行计算即可得出答案.【详解】根据题意得:(分),答:他最终得分是15.1分.故答案为:15.1.【点睛】本题考查了加权平均数的概念.在本题中专业知识、工作经验、仪表形象的权重不同,因而不能简单地平均,而应将各人的各项成绩乘以权之后才能求出最后的得分.13、【解析】
连接DE、CD,先证明四边形DEFC为平行四边形,再求出CD的长,即为EF的长.【详解】连接DE、CD,∵D、E分别是AB、AC的中点,CF=BC∴DE=BC=CF,DE∥BF,∴四边形DEFC为平行四边形,∵BD=AB=,BC=3,AB⊥BF,∴EF=CD=【点睛】此题主要考查四边形的线段求解,解题的关键是根据题意作出辅助线,求证平行四边形,再进行求解.14、【解析】
以B为圆心,BA长为半径作圆,延长AB交⊙B于E,连接CE,由圆周角定理的推论得,进而CE=AD=1,由直径所对的圆周角是直角,有勾股定理即可求得AC的长.【详解】如图,以B为圆心,BA长为半径作圆,延长AB交⊙B于E,连接CE,∵AB=BC=BD=2,∴C,D在⊙B上,∵AB∥CD,∴,∴CE=AD,∵AD=1,∴CE=AD=1,AE=AB+BE=2AB=4,∵AE是⊙B的直径,∴∠ACE=90º,∴AC==,故答案为.【点睛】本题借助于圆的模型把三角形的问题转化为圆的性质的问题,再解题过程中需让学生体会这种转化的方法.15、1【解析】
根据直角三角形的性质(斜边上的中线等于斜边的一半),求出DM=AB=3,即可得到ME=1,根据题意求出DE=DM+ME=4,根据三角形中位线定理可得BC=2DE=1.【详解】解:∵AM⊥BM,点D是AB的中点,
∴DM=AB=3,
∵ME=DM,
∴ME=1,
∴DE=DM+ME=4,
∵D是AB的中点,DE∥BC,
∴BC=2DE=1,
故答案为:1.点睛:本题考查的是三角形的中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.16、4【解析】
根据题意可证明四边形EFGH为菱形,故可求出面积.【详解】∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90°,∵E、F、G、H分别是四条边的中点,∴AE=DG=BE=CG,AH=DH=BF=CF,∴△AEH≌△DGH≌△BEF≌△CGF(SAS),∴EH=EF=FG=GH,∴四边形EFGH是菱形,∵HF=2,EG=4,∴四边形EFGH的面积为HF·EG=×2×4=4.【点睛】此题主要考查菱形的判定与面积求法,解题的关键是熟知特殊平行四边形的性质与判定定理.17、2(m+2)(m-2)【解析】
先提取公因式2,再对余下的多项式利用平方差公式继续分解因式.【详解】2m2-8,=2(m2-4),=2(m+2)(m-2)【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法,十字相乘等方法分解.18、6.5【解析】
利用勾股定理求得直角三角形的斜边,然后利用直角三角形斜边上的中线等于斜边的一半解题.【详解】解:如图,在△ABC中,∠C=90°,AC=11,BC=5,根据勾股定理知,∵CD为斜边AB上的中线,故答案为:6.5【点睛】本题考查了勾股定理、直角三角形斜边上的中线.勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a1+b1=c1.即直角三角形,两直角边的平方和等于斜边的平方.直角三角形的性质:在直角三角形中斜边上的中线等于斜边的一半.三、解答题(共66分)19、(1)见解析;(2)见解析.【解析】
(1)利用平行线的性质及中点的定义,可利用AAS证得结论;
(2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;【详解】证明:(1)∵AF∥BC∴∠AFE=∠DBE∵E是AD中点,∴AE=DE在△AEF和DEB中∴△AEF≌△DEB(AAS)(2)在Rt△ABC中,D是BC的中点,所以,AD=BD=CD又AF∥DB,且AF=DB,所以,AF∥DC,且AF=DC,所以,四边形ADCF是菱形.【点睛】本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键.20、(1)见解析;(1)△DEF是正三角形;理由见解析;(3)c1=a1+ab+b1【解析】试题分析:(1)由正三角形的性质得∠CAB=∠ABC=∠BCA=60°,AB=BC,证出∠ABD=∠BCE,由ASA证明△ABD≌△BCE即可;、(1)由全等三角形的性质得出∠ADB=∠BEC=∠CFA,证出∠FDE=∠DEF=∠EFD,即可得出结论;(3)作AG⊥BD于G,由正三角形的性质得出∠ADG=60°,在RtΔADG中,DG=b,AG=b,在RtΔABG中,由勾股定理即可得出结论.试题解析:(1)△ABD≌△BCE≌△CAF;理由如下:∵△ABC是正三角形,∴∠CAB=∠ABC=∠BCA=60°,AB=BC,∵∠ABD=∠ABC﹣∠1,∠BCE=∠ACB﹣∠3,∠1=∠3,∴∠ABD=∠BCE,在△ABD和△BCE中,,∴△ABD≌△BCE(ASA);(1)△DEF是正三角形;理由如下:∵△ABD≌△BCE≌△CAF,∴∠ADB=∠BEC=∠CFA,∴∠FDE=∠DEF=∠EFD,∴△DEF是正三角形;(3)作AG⊥BD于G,如图所示:∵△DEF是正三角形,∴∠ADG=60°,在Rt△ADG中,DG=b,AG=b,在Rt△ABG中,c1=(a+b)1+(b)1,∴c1=a1+ab+b1.考点:1.全等三角形的判定与性质;1.勾股定理.21、(1)见解析;(2)成立,理由见解析.【解析】
(1)图①在AB上取一点M,使AM=EC,连接ME,证明△AME≌△BCF,从而可得到AE=EF;(2)图②在AB上取一点M,使AM=EC,连接ME,证明△AME≌△BCF,从而可得到AE=EF;图③在BA的延长线上取一点N,使AN=CE,连接NE,然后证明△ANE≌△ECF,从而可得到AE=EF.【详解】解:在上取一点,使,连接.∴.∴.∴.∵是外角的平分线,∴.∴.∴.∵,,∴.∴.∴.(2)图②结论:.图③结论:.图②证明:如图②,在上取一点,使,连接.∴.∴.∴.∵是外角的平分线,∴.∴.∴.∵,,∴.∴.∴.图③证明:如图③,在的延长线上取一点,使,连接.∴.∴.∵四边形是正方形,∴.∴.∴.∴.∴.【点睛】本题主要考查的是全等三角形的性质和判定、正方形的性质的应用等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.22、详见解析【解析】
首先根据平行四边形的性质,得出,,,,进而得出,,即可判定.【详解】∵四边形是平行四边形,∴,∵四边形是平行四边形,∴,∴,∴四边形是平行四边形【点睛】此题主要考查平行四边形的性质和判定,熟练掌握,即可解题.23、①菜地离小明家1.1千米,小明走到菜地用了15分钟;②小明给菜地浇水用了10分钟;③玉米地离菜地、小明家的距离分别为0.9千米,2千米,小明从玉米地走回家平均速度是0.08千米/分钟.【解析】
①根据函数图象可以直接写出菜地离小明家多远,小明走到菜地用了多少时间;②根据函数图象中的数据可以得到小明给菜地浇水用了多少时间;③根据函数图象中的数据可以得到玉米地离菜地、小明家多远,小明从玉米地走回家平均速度是多少.【详解】①由图象可得,菜地离小明家1.1千米,小明走到菜地用了15分钟;②25-15=10(分钟),即小明给菜地浇水用了10分钟;③2-1.1=0.9(千米)玉米地离菜地、小明家的距离分别为0.9千米,2千米,小明从玉米地走回家平均速度是2÷(80-55
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025单位保洁服务合同范本
- 2025商业超市供货合同
- 2《宪法是根本法》(说课稿) -统编版道德与法治六年级上册
- 农村房屋翻新合同范例
- 养殖场长期租赁合同范例
- 劳务分包结算合同范本
- 2024-2025学年高中地理 第一章 环境与环境问题 1.1 人类与环境的关系说课稿 中图版选修6
- 两月工程合同范本
- 劳务合同范本刘律师
- 浦东钢结构吊装施工方案
- 人教版PEP版小学英语三年级下册Unit 4 Healthy food Part A课件
- 2024年陕西省中考道德与法治真题(A卷)(原卷版)
- (2024)湖北省公务员考试《行测》真题及答案解析
- 金融警示教育案例
- 对口升学语文模拟试卷(3)-江西省(解析版)
- 反恐防暴器械与战术应用讲解
- 电商平台客服人员绩效考核手册
- 【课件】第五单元化学反应的定量关系新版教材单元分析九年级化学人教版(2024)上册
- 04S519小型排水构筑物(含隔油池)图集
- 2024年秋季新人教版八年级上册物理课件 3.5跨学科实践:探索厨房中的物态变化问题
- 山东省威海乳山市(五四制)2023-2024学年八年级下学期期末考试化学试题(解析版)
评论
0/150
提交评论