湖南省浏阳市部分学校2022-2023学年数学八下期末检测模拟试题含解析_第1页
湖南省浏阳市部分学校2022-2023学年数学八下期末检测模拟试题含解析_第2页
湖南省浏阳市部分学校2022-2023学年数学八下期末检测模拟试题含解析_第3页
湖南省浏阳市部分学校2022-2023学年数学八下期末检测模拟试题含解析_第4页
湖南省浏阳市部分学校2022-2023学年数学八下期末检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下面四个手机的应用图标中,是中心对称图形的是()A. B. C. D.2.满足下述条件的三角形中,不是直角三角形的是A.三个内角之比为1:2:3 B.三条边长之比为1::C.三条边长分别为,,8 D.三条边长分别为41,40,93.一次函数的图象如图所示,则不等式的解集是()A. B. C. D.4.在下列性质中,平行四边形不一定具有的是()A.对边相等 B.对边平行 C.对角互补 D.内角和为360°5.计算(﹣a)2•a3的结果正确的是()A.﹣a6 B.a6 C.﹣a5 D.a56.《九章算术》是我国古代的数学名著,书中的“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺.问折者高几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部3尺远,问折断处离地面的高度是多少?设折断后离地面的高度为x尺,则可列方程为()A.x2–3=(10–x)2 B.x2–32=(10–x)2 C.x2+3=(10–x)2 D.x2+32=(10–x)27.若代数式有意义,则实数的取值范围是()A. B. C. D.8.在三角形纸片ABC中,AB=8,BC=4,AC=6,按下列方法沿虚线剪下,能使阴影部分的三角形与△ABC相似的是()A. B. C. D.9.下列各式属于最简二次根式的有()A. B. C. D.10.如图,在矩形ABCD中,对角线AC,BD相交于点O,若OA=2,则BD的长为()A.4 B.3 C.2 D.111.若=﹣a,则a的取值范围是()A.﹣3≤a≤0 B.a≤0 C.a<0 D.a≥﹣312.下列等式从左到右的变形,属于因式分解的是()A. B.C. D.二、填空题(每题4分,共24分)13.如图,在菱形ABCD中,AC=8,菱形ABCD的面积为24,则菱形ABCD周长为________14.如图,正方形CDEF内接于,,,则正方形的面积是________.15.如图,在矩形ABCD中,对角线AC与BD交于点O,过点A作AE⊥BD于点E,已知∠EAD=3∠BAE,则∠EOA=______°.16.正方形,,按如图所示放置,点、、在直线上,点、、在x轴上,则的坐标是________.17.某厂去年1月份的产值为144万元,3月份下降到100万元,求这两个月平均每月产值降低的百分率.如果设平均每月产值降低的百分率是x,那么列出的方程是___.18.如图,把△ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(a,b),那么点P变换后的对应点P′的坐标为_____.三、解答题(共78分)19.(8分)如图.已知A、B两点的坐标分别为A(0,),B(2,0).直线AB与反比例函数的图象交于点C和点D(1,a).(1)求直线AB和反比例函数的解析式.(2)求∠ACO的度数.20.(8分)如图,在网格图中,平移使点平移到点,每小格代表1个单位。(1)画出平移后的;(2)求的面积.21.(8分)如图,在的方格中,的顶点均在格点上.试按要求画出线段(,均为格点),各画出一条即可.22.(10分)丽君花卉基地出售两种盆栽花卉:太阳花6元/盆,绣球花10元/盆.若次购买的绣球花超过20盆时,超过20盆部分的绣球花价格打8折.(1)求出太阳花的付款金额(元)关于购买量(盆)的函数关系式;(2)求出绣球花的付款金额(元)关于购买量(盆)的函数关系式;(3)为了美化环境,花园小区计划到该基地购买这两种花卉共90盆,其中太阳花数量不超过绣球花数量的一半.两种花卉各买多少盆时,总费用最少,最少费用是多少元?23.(10分)将矩形ABCD折叠使点A,C重合,折痕交BC于点E,交AD于点F,可以得到四边形AECF是一个菱形,若AB=4,BC=8,求菱形AECF的面积.24.(10分)如图,在平面直角坐标系中,已知点,点,点在第一象限内,轴,且.(1)求直线的表达式;(2)如果四边形是等腰梯形,求点的坐标.25.(12分)计算:(1)(2)(3)若与|x-y-3|互为相反数,则x+y的值为多少?26.已知,直线与反比例函数交于点,且点的横坐标为4,过轴上一点作垂直于交于点,如图.(1)若点是线段上一动点,过点作,,垂足分别于、,求线段长度的最小值.(2)在(1)的取得最小值的前提下,将沿射线平移,记平移后的三角形为,当时,在平面内存在点,使得、、、四点构成平行四边形,这样的点有几个?直接写出点的坐标.

参考答案一、选择题(每题4分,共48分)1、D【解析】

根据中心对称图形的定义即可求解.【详解】由图可知D为中心对称图形,故选D.【点睛】此题主要考查中心对称图形的定义,解题的关键是熟知中心对称图形的特点.2、C【解析】

根据勾股定理的逆定理逐项判断即可.【详解】解:A、根据三角形内角和定理可求出三个角分别为30度,60度,90度,所以是直角三角形;B、,其符合勾股定理的逆定理,所以是直角三角形;C、,不符合勾股定理的逆定理,所以不是直角三角形;D、,符合勾股定理的逆定理,所以是直角三角形;故选C.【点睛】本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.3、A【解析】

根据一次函数与一元一次不等式的关系即可求出答案.【详解】解:∵y=kx+b,kx+b<0∴y<0,由图象可知:x<-2故选:A.【点睛】本题考查一次函数与一元一次不等式,解题的关键是正确理解一次函数与一元一次不等式的关系,本题属于基础题型.4、C【解析】A、平行四边形的对边相等,故本选项正确;B、平行四边形的对边平行,故本选项正确;C、平行四边形的对角相等不一定互补,故本选项错误;D、平行四边形的内角和为360°,故本选项正确;故选C5、D【解析】

直接利用积的乘方运算法则以及结合同底数幂的乘法运算法则计算得出答案.【详解】解:(﹣a)2•a3=a2•a3=a1.故选D.【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.6、D【解析】

竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10-x)尺,利用勾股定理解题即可.【详解】设竹子折断处离地面x尺,则斜边为(10-x)尺,根据勾股定理得:x1+31=(10-x)1.故选D.【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.7、B【解析】

利用二次根式和分式有意义的条件即可得出答案.【详解】解:∵代数式有意义,∴x≥0,x-1≠0,

解得:x≥0且x≠1.故选:B【点睛】此题主要考查了二次根式和分式有意义的条件,正确把握定义是解题关键.8、D【解析】解:三角形纸片ABC中,AB=8,BC=4,AC=1.A.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;B.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;C.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;D.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC相似,故此选项正确;故选D.点睛:此题主要考查了相似三角形的判定,正确利用相似三角形两边比值相等且夹角相等的两三角形相似是解题关键.9、B【解析】

先根据二次根式的性质化简,再根据最简二次根式的定义判断即可.【详解】A选项:,故不是最简二次根式,故A选项错误;B选项:是最简二次根式,故B选项正确;C选项:,故不是最简二次根式,故本选项错误;D选项:,故不是最简二次根式,故D选项错误;

故选:B.【点睛】考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键.10、A【解析】

因为矩形的对角线相等且互相平分,已知OA=2,则AC=2OA=4,又BD=AC,故可求.【详解】解:∵四边形ABCD是矩形∴OC=OA,BD=AC又∵OA=2,∴AC=OA+OC=2OA=4∴BD=AC=4故选:A.【点睛】本题考查矩形的对角线的性质.熟练掌握矩形对角线相等且互相平分是解题的关键.11、A【解析】

根据二次根式的性质列出不等式,解不等式即可解答.【详解】∵==﹣a,∴a≤0,a+3≥0,∴﹣3≤a≤0.故选A.【点睛】本题考查二次根式的性质,根据二次根式的性质列出不等式是解题的关键.12、C【解析】

根据因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解分别进行判断,即可得出答案.【详解】解:A、x2+2x-1≠(x-1)2,故本选项错误;

B、右边不是整式积的形式,不是因式分解,故本选项错误;

C、符合因式分解的定义,故本选项正确;

D、右边不是整式积的形式,不是因式分解,故本选项错误.

故选:C.【点睛】本题考查多项式的因式分解,解题的关键是正确理解因式分解的意义.二、填空题(每题4分,共24分)13、20【解析】

根据菱形面积公式可求BD的长,根据勾股定理可求菱形边长,即可求周长.【详解】解:∵S菱形ABCD=12AC×BD∴24=12×8×BD∴BD=6,∵ABCD是菱形,∴AO=CO=4,BO=DO=3,AC⊥BD,∴AB=A∴菱形ABCD的周长为4×5=20.【点睛】本题考查了菱形的性质,利用菱形的面积公式求BD的长是本题的关键.14、0.8【解析】

根据题意分析可得△ADE∽△EFB,进而可得2DE=BF,2AD=EF=DE,由勾股定理得,DE2+AD2=AE2,可解得DE,正方形的面积等于DE的平方问题得解.【详解】∵根据题意,易得△ADE∽△EFB,∴BE:AE=BF:DE=EF:AD=2:1,∴2DE=BF,2AD=EF=DE,由勾股定理得,DE+AD=AE,解得:DE=EF=,故正方形的面积是=,故答案为:0.8【点睛】本题考查相似三角形,熟练掌握相似三角形的判定及基本性质是解题关键.15、【解析】

由已知条件可先求得,在Rt△ABE中可求得,再由矩形的性质可得OA=OB,则可求得,即可求得结果;【详解】∵四边形ABCD是矩形,∴,OA=OB,∵∠EAD=3∠BAE,∴,∴,∵AE⊥BD,∴,∴,.故答案是.【点睛】本题主要考查了利用矩形的性质求角度,准确利用已知条件是解题的关键.16、【解析】

先求出A1、A2、A3的坐标,找出规律,即可得出的坐标.【详解】解:∵直线y=x+1和y轴交于A1,

∴A1的坐标(0,1),即OA1=1,

∵四边形C1OA1B1是正方形,

∴OC1=OA1=1,

把x=1代入y=x+1得:y=2,

∴A2的坐标为(1,2),

同理,A3的坐标为(3,4),

∴An的坐标为(2n-1-1,2n-1),

∴的坐标是,

故答案为:.【点睛】本题考查了一次函数图象上点的坐标特征以及正方形的性质,通过求出第一个正方形、第二个正方形和第三个正方形的边长得出规律是解决问题的关键.17、144(1﹣x)2=1.【解析】

设平均每月产值降低的百分率是x,那么2月份的产值为144(1-x)万元,3月份的产值为144(1-x)2万元,然后根据3月份的产值为1万元即可列出方程.【详解】设平均每月产值降低的百分率是x,则2月份的产值为144(1﹣x)万元,3月份的产值为144(1﹣x)2万元,根据题意,得144(1﹣x)2=1.故答案为144(1﹣x)2=1.【点睛】本题考查由实际问题抽象出一元二次方程-求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.得到3月份的产值的等量关系是解决本题的关键.18、(a+3,b+2)【解析】

找到一对对应点的平移规律,让点P的坐标也作相应变化即可.【详解】点B的坐标为(-2,0),点B′的坐标为(1,2);横坐标增加了1-(-2)=3;纵坐标增加了2-0=2;∵△ABC上点P的坐标为(a,b),∴点P的横坐标为a+3,纵坐标为b+2,∴点P变换后的对应点P′的坐标为(a+3,b+2).【点睛】解决本题的关键是根据已知对应点找到各对应点之间的变化规律.三、解答题(共78分)19、(1)y=x+,y=﹣;(2)∠ACO=30°;【解析】

(1)根据A、B两点坐标求得一次函数解析式,再求得D点的具体坐标,从而求得反比例函数的解析式.(2)联立函数解析式求得C点坐标,过C点作CH⊥x轴于H,证明为等腰三角形,根据特殊直角三角形求得的度数,从而求得的度数.【详解】解:(1)设直线AB的解析式为:,把A(0,),B(2,0)分别代入,得,,解得=,b=.∴直线AB的解析式为:y=x+;∵点D(1,a)在直线AB上,∴a=+=,即D点坐标为(1,),又∵D点(1,)在反比例函数的图象上,∴k=1×=﹣,∴反比例函数的解析式为:y=﹣;(2)由,解得或,∴C点坐标为(3,﹣),过C点作CH⊥x轴于H,如图,∵OH=3,CH=,∴OC=,而OA=,∴OA=OC,∴∠OAC=∠OCA.又∵OB=2,∴AB=,在Rt△AOB中,∴∠OAB=30°,∴∠ACO=30°【点睛】本题考查了一次函数与反比例函数的交点问题,解题的关键是熟练掌握待定系数法.20、(1)详见解析;(2)【解析】

(1)根据题意知:A到D是相右平移6个方格,相下平移2个方格,即可画出C、B的对应点,连接即可;

(2)化为正方形减去3个三角形即可.【详解】(1)如图所示:△DEF即为所求;(2)【点睛】本题主要考查对平移的性质,作图-平移变换等知识点的理解和掌握,能根据题意正确画出图形是解此题的关键.21、见解析【解析】

图1,从图中可得到AC边的中点在格点上设为E,过E作AB的平行线即可在格点上找到F;图2,EC=,EF=,FC=,借助勾股定理确定F点.【详解】解:如图:

【点睛】本题考查三角形作图;在格点中利用勾股定理,三角形的性质作平行、垂直是解题的关键.22、(1):y1=6x;(2)y2=;(3)太阳花30盆,绣球花60盆时,总费用最少,最少费用是700元【解析】

(1)根据总价=单价×数量,求出太阳花的付款金额y1(元)关于购买量x(盆)的函数解析式;(2分两种情况:①一次购买的绣球花不超过20盆;②一次购买的绣球花超过20盆;根据总价=单价×数量,求出绣球花的付款金额y2(元)关于购买量x(盆)的函数解析式即可;(3)首先太阳花数量不超过绣球花数量的一半,可得太阳花数量不超过两种花数量的,即太阳花数量不超过30盆,所以绣球花的数量不少于60盆;然后设太阳花的数量是x盆,则绣球花的数量是90-x盆,根据总价=单价×数量,求出购买两种花的总费用是多少,进而判断出两种花卉各买多少盆时,总费用最少,最少费用是多少元即可.【详解】解:(1)太阳花的付款金额y1(元)关于购买量x(盆)的函数解析式是:y1=6x;(2)①一次购买的绣球花不超过20盆时,付款金额y2(元)关于购买量x(盆)的函数解析式是:y2=10x(x≤20);②一次购买的绣球花超过20盆时,付款金额y2(元)关于购买量x(盆)的函数解析式是:y2=10×20+10×0.8×(x-20)=200+8x-160=8x+40综上,可得绣球花的付款金额y2(元)关于购买量x(盆)的函数解析式是:y2=(3)根据题意,可得太阳花数量不超过:90×(盆),所以绣球花的数量不少于:90-30=60(盆),设太阳花的数量是x盆,则绣球花的数量是(90-x)盆,购买两种花的总费用是y元,则x≤30,则y=6x+[8(90-x)+40]=6x+[760-8x]=760-2x,∵-2<0,∴y随x的增大而减小,∵x≤30,∴当x=30时,y最小=760-2×30=700(元),90-30=60盆,答:太阳花30盆,绣球花60盆时,总费用最少,最少费用是700元.【点睛】本题主要考查了一次函数的应用,要熟练掌握,解答此题的关键是要明确:分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.此题还考查了单价、总价、数量的关系:总价=单价×数量,单价=总价÷数量,数量=总价÷单价,要熟练掌握.23、20.【解析】

设菱形AECF的边长为x,根据矩形的性质得到∠B=90°,根据勾股定理列出方程,解方程求出x的值,根据菱形的面积公式计算即可.【详解】设菱形AECF的边长为x,则BE=8−x,∵四边形ABCD为矩形,∴∠B=90°,由勾股定理得,,即,解得,x=5,即EC=5,∴菱形AECF的面积=EC⋅AB=20.【点睛】此题考查矩形的性质、翻折变换(折叠问题)、菱形的性质,解题关键在于掌握烦着图形得变化规律.24、(1);(2)或【解析】

(1)由得出BA=6,即可得B的坐标,再设直线BC的表达式,即可解得.(2)分两种情况,情况一:当时,点在轴上;情况二:当时.分别求出两种情况D的坐标即可.【详解】(1)轴设直线的表达式为,由题意可得解得直线的表达式为(2)1)当时,点在轴上,设,方法一:过点作轴,垂足为四边形是等腰梯形,方法二:,解得经检验是原方程的根,但当时,四边形是平行四边形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论