版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.计算(2)2的结果是()A.-2 B.2 C.±2 D.42.如图1,在矩形中,动点从点出发,沿方向运动至点处停止.设点运动的路程为,的面积为,如果关于的函致图象如图2所示,则矩形的周长是()图1图2A. B. C. D.3.如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.结论:①EG⊥FH;②四边形EFGH是矩形;③HF平分∠EHG;④EGBC;⑤四边形EFGH的周长等于2AB.其中正确的个数是()A.1 B.2 C.3 D.44.如图,AC=AD,BC=BD,则有()A.AB垂直平分CD B.CD垂直平分ABC.AB与CD互相垂直平分 D.CD平分∠ACB5.如图,已知二次函数,它与轴交于、,且、位于原点两侧,与的正半轴交于,顶点在轴右侧的直线:上,则下列说法:①②③④其中正确的结论有()A.①② B.②③ C.①②③ D.①②③④6.如图,△ABC中,∠C=90°,E、F分别是AC、BC上两点,AE=8,BF=6,点P、Q、D分别是AF、BE、AB的中点,则PQ的长为()A.4 B.5 C.6 D.87.如图,在△ABC中,AB=AC,∠BAC=120°,AB的垂直平分线交AB于点E,交BC于点F,连接AF,则∠AFC的度数()A.B.C.D.8.某校八班名同学在分钟投篮测试中的成绩如下:,,,,,(单位:个),则这组数据的中位数、众数分别是()A., B., C., D.,9.正n边形每个内角的大小都为108°,则n=()A.5 B.6 C.7 D.810.某校九年级(1)班全体学生2018年初中毕业体育学业考试成绩统计表如下:成绩/分45495254555860人数2566876根据上表中信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是55分C.该班学生这次考试成绩的中位数是55分D.该班学生这次考试成绩的平均数是55分11.已知一组数据a.b.c的平均数为5,方差为4,那么数据,,的平均数和方差分别是()A.3,2 B.3,4 C.5,2 D.1012.直角三角形两边分别为3和4,则这个直角三角形面积为()A.6 B.12 C. D.或6二、填空题(每题4分,共24分)13.如图,Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,BC=2cm,则CD=_____cm.14.如图,点、分别是平行四边形的两边、的中点.若的周长是30,则的周长是_________.15.将直线向上平移1个单位,那么平移后所得直线的表达式是_______________16.如图,函数和的图象相交于点A(,3),则不等式的解集为___________.17.已知中,,,直线经过点,分别过点,作直线的垂线,垂足分别为点,,若,,则线段的长为__________.18.一个等腰三角形的周长为12cm,设其底边长为ycm,腰长为xcm,则y与x的函数关系是为_____________________.(不写x的取值范围)三、解答题(共78分)19.(8分)解方程:(1)(2x+1)2=(x-1)2;(2)x2+4x-7=020.(8分)某校组织275名师生郊游,计划租用甲、乙两种客车共7辆,已知甲客车载客量是30人,乙客车载客量是45人,其中,每辆乙种客车租金比甲种客车多100元,5辆甲种客车和2辆乙种客车租金共需3000元.(1)租用一辆甲种客车、一辆乙种客车的租金各多少元?(2)设租用甲种客车辆,总租车费为元,求与的函数关系式;在保证275名师生都有座位的前提下,求当租用甲种客车多少辆时,总租车费最少,并求出这个最少费用.21.(8分)如图,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是1、4、1.则△ABC的面积是.22.(10分)阅读理解题:定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减,乘法运算与整式的加、减、乘法运算类似.例如计算:(2-i)+(5+3i)=(2+5)+(-1+3)i=7+2i;(1+i)×(2-i)=1×2-i+2×i-i2=2+(-1+2)i+1=3+i;根据以上信息,完成下列问题:(1)填空:i3=,i4=;(2)计算:(1+i)×(3-4i);(3)计算:i+i2+i3+…+i1.23.(10分)计算:,24.(10分)已知y=y1+y2,y1与x成正比例,y2与x-2成正比例,当x=1时,y=0;当x=-3时,y=4.(1)求y与x的函数关系式,并说明此函数是什么函数;(2)当x=3时,求y的值.25.(12分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD交于点O,AO=BO,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.26.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)直接写出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车出发多长时间后,两车恰好相距40km?
参考答案一、选择题(每题4分,共48分)1、B【解析】
根据(a【详解】解:(2故选:B.【点睛】本题考查了二次根式的化简与求值,正确掌握二次根式的性质是解题关键.2、C【解析】
根据三角形的面积变化情况,可得R在PQ上时,三角形面积不变,可得答案.【详解】解:由图形可知,,周长为,故选C.【点睛】本题考查了动点函数图象,利用三角型面积的变化确定R的位置是解题关键.3、C【解析】
根据三角形的中位线平行于第三边并且等于第三边的一半与AB=CD可得四边形EFGH是菱形,然后根据菱形的对角线互相垂直平分,并且平分每一组对角的性质对各小题进行判断即可得答案.【详解】∵E、F、G、H分别是BD、BC、AC、AD的中点,∴EF=CD,FG=AB,GH=CD,HE=AB,∵AB=CD,∴EF=FG=GH=HE,∴四边形EFGH是菱形,故②错误,∴EG⊥FH,HF平分∠EHG;故①③正确,∴四边形EFGH的周长=EF=FG=GH=HE=2AB,故⑤正确,没有条件可证明EG=BC,故④错误,∴正确的结论有:①③⑤,共3个,故选C.【点睛】本题考查了三角形中位线定理与菱形的判定与菱形的性质,根据三角形的中位线定理与AB=CD判定四边形EFGH是菱形并熟练掌握菱形的性质是解答本题的关键.4、A【解析】
由AC=AD,BC=BD,可得点A在CD的垂直平分线上,点B在CD的垂直平分线上,又由两点确定一条直线,可得AB是CD的垂直平分线.【详解】解:∵AC=AD,BC=BD,∴点A在CD的垂直平分线上,点B在CD的垂直平分线上,∴AB是CD的垂直平分线.即AB垂直平分CD.故选:A.【点睛】此题考查了线段垂直平分线的性质.此题难度不大,注意掌握数形结合思想的应用.5、D【解析】
由根与系数的关系,结合顶点位置和坐标轴位置,进行分析即可得到答案.【详解】解:设函数图像与x轴交点的横坐标分别为x1,x2则根据根于系数的关系得到:x1+x2=b,x1x2=c∵A,B两点位于y轴两侧,且对称轴在y轴的右侧,则b>0函数图像交y轴于C点,则c<0,∴bc<0,即①正确;又∵顶点坐标为(),即()∴=4,即又∵=,即∴AB=4即③正确;又∵A,B两点位于y轴两侧,且对称轴在y轴的右侧∴<2,即b<4∴0<b<4,故②正确;∵顶点的纵坐标为4,∴△ABD的高为4∴△ABD的面积=,故④正确;所以答案为D.【点睛】本题考查了二次函数与一元二次方程的联系,熟练掌握二次函数和一元二次方程的性质是解答本题的关键.6、B【解析】
利用三角形中位线定理即可作答.【详解】∵点P、Q、D分别是AF、BE、AB的中点∴∴DQ∥AE,PD∥BF∵∠C=90°∴AE⊥BF∴DQ⊥PD∴∠PDQ=90°∴.故选B.【点睛】本题考查的知识点是勾股定理的运用,解题关键是证得∠PDQ=90°.7、C【解析】
先由等腰三角形的性质求出∠B的度数,再由垂直平分线的性质可得出∠BAF=∠B,由三角形内角与外角的关系即可解答.【详解】解:∵AB=AC,∠BAC=120°,∴∠B=(180°-120°)÷2=30°,∵EF垂直平分AB,∴BF=AF,∴∠BAF=∠B=30°,∴∠AFC=∠BAF+∠B=60°.故选:C.【点睛】本题考查的是线段垂直平分线的性质,即线段的垂直平分线上的点到线段的两个端点的距离相等.也考查了等腰三角形的性质及三角形外角的性质.8、D【解析】
根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】解:把数据从小到大的顺序排列为:2,1,1,8,10;在这一组数据中1是出现次数最多的,故众数是1.处于中间位置的数是1,那么由中位数的定义可知,这组数据的中位数是1.故选:D.【点睛】此题考查中位数与众数的意义,掌握基本概念是解决问题的关键9、A【解析】试题分析:∵正n边形每个内角的大小都为108°,∴每个外角为:72°,则n=360°÷72°=1.故选A.考点:多边形内角与外角.10、D【解析】
结合表格,根据众数、平均数、中位数的概念求解.【详解】解:A、该班一共有2+5+6+6+8+7+6=40名同学,正确;B、该班学生这次考试成绩的众数是55分,正确;C、该班学生这次考试成绩的中位数是=55分,正确;D、该班学生这次考试成绩的平均数是×(45×2+49×5+52×6+54×6+55×8+58×7+60×6)=54.425分,错误.故选D.【点睛】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.11、B【解析】
根据数据a,b,c的平均数以及方差即可求出a-2,b-2,c-2的平均数和方差.【详解】∵数据a,b,c的平均数是5,∴,∴,∴数据a-2,b-2,c-2的平均数是3,∵数据a,b,c的方差为4,∴∴a-2,b-2,c-2的方差所以B选项正确.【点睛】主要考查平均数和方差的公式计算以及灵活运用.12、D【解析】
此题要考虑全面,一种是3,4为直角边;一种是4是斜边,分情况讨论即可求解.【详解】当3和4是直角边时,面积为;当4是斜边时,另一条直角边是,面积为,故D选项正确.【点睛】此题主要考查勾股定理和三角形面积的计算,注意要分情况讨论.二、填空题(每题4分,共24分)13、1【解析】
根据含30°角的直角三角形的性质求出AB,再根据直角三角形斜边上的中线的性质求出CD即可.【详解】解:∵Rt△ABC中,∠ACB=90°,∠A=30°,BC=1cm,∴AB=1BC=4cm,∵Rt△ABC中,∠ACB=90°,点D是AB的中点,∴CD=AB=1cm.故答案为:1.【点睛】本题考查含30°角的直角三角形的性质和直角三角形斜边上的中线的性质,能灵活运用定理进行推理是解答此题的关键.14、15【解析】
根据平行四边形与中位线的性质即可求解.【详解】∵四边形ABCD为平行四边形,的周长是30,∴△ADC的周长为30,∵点、分别是平行四边形的两边、的中点.∴DE=AD,DF=CD,EF=AC,∴则的周长=×30=15.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的性质及中位线的性质.15、【解析】
平移时k的值不变,只有b发生变化.【详解】原直线的k=2,b=0;向上平移2个单位长度,得到了新直线,那么新直线的k=2,b=0+1=1,∴新直线的解析式为y=2x+1.故答案为:y=2x+1.【点睛】本题考查了一次函数图象的几何变换,难度不大,要注意平移后k值不变.16、x≥1.5【解析】
试题分析:首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式2x>ax+4的解集即可.解:∵函数y=2x过点A(m,3),∴2m=3,解得:m=,∴A(,3),∴不等式2x>ax+4的解集为x>.故答案为x>.考点:一次函数与一元一次不等式.17、或【解析】
分两种情况:①如图1所示:先证出∠1=∠3,由勾股定理求出CE,再证明△BCF≌△CAE,得出对应边相等CF=AE=3,得出EF=CE-CF即可;②如图2所示:先证出∠1=∠3,由勾股定理求出CE,再证明△BCF≌△CAE,得出对应边相等CF=AE=3,得出EF=CE+CF即可.【详解】分两种情况:①如图1所示:∵∠ACB=90°,∴∠1+∠2=90°,∵BF⊥CE,∴∠BFC=90°,∴∠2+∠3=90°,∴∠1=∠3,∵AE⊥CE,∴∠AEC=90°,∴CE=,在△BCF和△CAE中,,∴△BCF≌△CAE(AAS),∴CF=AE=3,∴EF=CE-CF=4-3=1;②如图2所示:∵∠ACB=90°,∴∠1+∠2=90°,∵BF⊥CF,∴∠BFC=90°,∴∠2+∠3=90°,∴∠1=∠3,∵AE⊥CF,∴∠AEC=90°,∴CE=,在△BCF和△CAE中,,∴△BCF≌△CAE(AAS),∴CF=AE=3,∴EF=CE+CF=4+3=1;综上所述:线段EF的长为:1或1.故答案为:1或1.【点睛】本题考查了全等三角形的判定与性质、勾股定理、互余两角的关系;本题有一定难度,需要进行分类讨论,作出图形才能求解.18、y=12-2x【解析】
根据等腰三角形周长公式可求出底边长与腰的函数关系式,【详解】解:因为等腰三角形周长为12,根据等腰三角形周长公式可求出底边长y与腰x的函数关系式为:y=12-2x.故答案为:y=12-2x.【点睛】本题考查一次函数的应用以及等腰三角形的周长及三边的关系,得出y与x的函数关系是解题关键.三、解答题(共78分)19、(1)x1=0,x2=-2;(2)x1=-2+,x2=-2-.【解析】分析:(1)用直接开平方法求解即可;(2)根据求根公式:计算即可.详解:(1)∵(2x+1)2=(x-1)2,∴2x+1=x-1或2x+1=-(x-1),∴2x-x=-1-1或2x+1=-x+1,∴2x-x=--1或2x+1=-x+1,∴x=-2或x=0,即x1=0,x2=-2;(2)x2+4x-7=0∵a=1,b=4,c=-7,∴x=,∴x1=-2+,x2=-2-.点睛:本题主要考查的知识点是一元二次方程的解法-直接开平方法和求根公式法.熟练掌握直接开平方法和求根公式法是解答本题的关键,本题属于一道基础题,难度适中.20、(1)租用一辆甲种客车的费用为300元,则一辆乙种客车的费用为400元;(2)w=-100x+2800;当租用甲种客车2辆时,总租车费最少,最少费用为1元.【解析】
(1)设租用一辆甲种客车的费用为x元,则一辆乙种客车的费用为(x+100)元,列出方程即可解决问题;(2)由题意w=300x+400(7-x)=-100x+2800,列出不等式求出x的取值范围,利用一次函数的性质即可解决问题.【详解】(1)设租用一辆甲种客车的费用为x元,则一辆乙种客车的费用为(x+100)元,由题意5x+2(x+100)=2300,解得x=300,答:租用一辆甲种客车的费用为300元,则一辆乙种客车的费用为400元.(2)由题意w=300x+400(7-x)=-100x+2800,又30x+45(7-x)≥275,解得x≤,∴x的最大值为2,∵-100<0,∴x=2时,w的值最小,最小值为1.答:当租用甲种客车2辆时,总租车费最少,最少费用为1元.【点睛】本题考查一元一次方程的应用、一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会构建一次函数解决最值问题.21、64【解析】
试题分析:根据平行可得三个三角形相似,再由它们的面积比等于相似比的平方,设其中一边为一求未知数,然后计算出最大的三角形与最小的三角形的相似比,从而求面积比.【详解】如图,,过M作BC的平行线交AB,AC于D,E,过M作AC平行线交AB,BC于F,H,过M作AB平行线交AC,BC于I,G,根据题意得,△1∽△2∽△3,∵S△1:S△2=1:4,S△1:S△3=1:1,∴DM:EM:GH=1:2:5,又∵四边形BDMG与四边形CEMH为平行四边形,∴DM=BG,EM=CH,设DM为x,则BC=BG+GH+CH=x+5x+2x=8x,∴BC:DM=8:1,∴S△ABC:S△FDM=64:1,∴S△ABC=1×64=64,故答案为:64.22、(2)-i,2;(2)7-i;(3)i-2.【解析】试题分析:(2)把代入求出即可;
(2)根据多项式乘以多项式的计算法则进行计算,再把代入求出即可;
(3)先根据复数的定义计算,再合并即可求解.试题解析:(2)故答案为−i,2;(2)(3)23、5-2【解析】
先根据绝对值、整数指数幂和二次根式的性质化简各数,然后进行加减即可得出答案。【详解】解:原式=2-1×1-2+4=5-2【点睛】本题考查了实数的混合运算,熟练掌握运算法则是关键。24、(1),是的一次函数;(2).【解析】【试题分析】(1)根据正比例函数的定义设:y1=k1x(k1≠0),y2=,根据y=y1+y2,得y=k1x+,根据题意,列方程组:解得:.再代入y=k1x+即可.
(2)将x=3代入(1)中的函数解析式,求函数值即可.【试题解析】(1)设y1=k1x(k1≠0),y2=∴y=k1x+
∵当x=1时,y=-1;当x=3时,y=5,
解得:∴y=-x+1.则y是x的一次函数.(2)当x=3时,y=-2.【方法点睛】本题目是一道考查正比例函数与一次函数的问题,关键注意:y2与x-2成正比例,设为y2=.25、(1)详见解析;(2)1【解析】
(1)证出∠BAD=∠BCD,得出四边形ABCD是平行四边形,得出OA=OC,OB=OD,证出AC=BD,即可解决问题;(2)作OF⊥BC于F.求出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版智能交通信号控制系统开发与实施合同
- 八年级生物上册 第5单元 第4章 第5节《人类对细菌和真菌的利用》说课稿 (新版)新人教版
- 二零二四年度软件定制开发与维护合同条款3篇
- 2024年度智能硬件研发与生产合作合同
- 广东省中山市七年级道德与法治下册 第七单元 乐观坚强 7.1调控情绪说课稿 粤教版
- 2024年度新一代信息技术转让许可协议2篇
- 2024年度公寓装修设计服务合同3篇
- 19《父爱之舟》说课稿-2024-2025学年五年级上册语文统编版
- 2024年度机械设备租赁合同标的及租赁期限3篇
- 2024外汇担保合同合同协议
- 刘润年度演讲2024
- 2024秋期国家开放大学《政治学原理》一平台在线形考(形考任务四)试题及答案
- 5.1+走近老师+课件-2024-2025学年统编版道德与法治七年级上册
- 质子交换膜水电解制氢阳极催化剂 测试方法
- 2024年大学英语三级考试级真题真题试卷
- 2024年高考英语试题(新高考Ⅱ卷) 含解析
- 2024年下半年教师资格考试高级中学思想政治面试试题及答案解析
- 带你听懂中国传统音乐智慧树知到期末考试答案章节答案2024年广州大学
- 四川省绵阳市绵阳新高考历史必刷试卷及答案解析
- 大学助农直播创业计划书
- 医疗质量检查反馈表
评论
0/150
提交评论