![上海市静安区名校2022-2023学年八年级数学第二学期期末统考模拟试题含解析_第1页](http://file4.renrendoc.com/view/b640fe4c2581398e724be97b78df33d2/b640fe4c2581398e724be97b78df33d21.gif)
![上海市静安区名校2022-2023学年八年级数学第二学期期末统考模拟试题含解析_第2页](http://file4.renrendoc.com/view/b640fe4c2581398e724be97b78df33d2/b640fe4c2581398e724be97b78df33d22.gif)
![上海市静安区名校2022-2023学年八年级数学第二学期期末统考模拟试题含解析_第3页](http://file4.renrendoc.com/view/b640fe4c2581398e724be97b78df33d2/b640fe4c2581398e724be97b78df33d23.gif)
![上海市静安区名校2022-2023学年八年级数学第二学期期末统考模拟试题含解析_第4页](http://file4.renrendoc.com/view/b640fe4c2581398e724be97b78df33d2/b640fe4c2581398e724be97b78df33d24.gif)
![上海市静安区名校2022-2023学年八年级数学第二学期期末统考模拟试题含解析_第5页](http://file4.renrendoc.com/view/b640fe4c2581398e724be97b78df33d2/b640fe4c2581398e724be97b78df33d25.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.不等式3x<﹣6的解集是()A.x>﹣2 B.x<﹣2 C.x≥﹣2 D.x≤﹣22.观察下列一组数:1,1,2,3,5,22,______。按照这组数的规律横线上的数是(A.23 B.13 C.4 D.3.一组数据:-1、2、3、1、0,则这组数据的平均数和方差分别是()A.1,1.8 B.1.8,1 C.2,1 D.1,24.若反比例函数的图象在第二、四象限,则的值是()A.-1或1 B.小于的任意实数 C.-1 D.不能确定5.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,下列说法:四边形ACED是平行四边形,△BCE是等腰三角形,四边形ACEB的周长是10+2,④四边形ACEB的面积是16.正确的个数是()A.2个 B.3个 C.4个 D.5个6.若平行四边形中两个内角的度数比为1:2,则其中较小的内角是()。A.60° B.90° C.120° D.45°7.若菱形ABCD的两条对角线长分别为6和8,则此菱形的面积为()A.5 B.12 C.24 D.488.如图,在平行四边形ABCD中,∠B=60°,将△ABC沿对角线AC折叠,点B的对应点落在点E处,且点B,A,E在一条直线上,CE交AD于点F,则图中等边三角形共有()A.4个 B.3个 C.2个 D.1个9.若a+c=b,那么方程ax2+bx+c=0(a≠0)必有一根是()A.1B.﹣1C.±1D.010.式子在实数范围内有意义,则x的取值范围()A.x≤2 B.x<2 C.x>2 D.x≥2二、填空题(每小题3分,共24分)11.若一次函数y=kx+b的图象经过点P(﹣2,3),则2k﹣b的值为_____.12.如上图,点A在双曲线y=上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为_____.13.点与点关于轴对称,则点的坐标是__________.14.如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PE⊥AC于F,则EF的最小值_____.15.甲、乙、丙三人进行射击测试,每人10次射击成绩的平均值都是8.9环,方差分别是S甲2=0.53,S乙2=0.51,S丙2=0.43,则三人中成绩最稳定的是______(填“甲”或“乙”或“丙”)16.某研究性学习小组进行了探究活动.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯顶端距离地面AO=12,梯子底端离墙角的距离BO=5m.亮亮在活动中发现无论梯子怎么滑动,在滑动的过程中梯子上总有一个定点到墙角O的距离始终是不变的定值,请问这个定值是_______.17.正比例函数图象与反比例函数图象的一个交点的横坐标为,则______.18.使代数式有意义的x的取值范围是_______.三、解答题(共66分)19.(10分)已知一次函数y=(m﹣2)x﹣3m2+12,问:(1)m为何值时,函数图象过原点?(2)m为何值时,函数图象平行于直线y=2x?20.(6分)如果一组数据1,2,2,4,的平均数为1.(1)求的值;(2)求这组数据的众数.21.(6分)为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造两种型号的沼气池共20个,以解决该村所有农户的燃料问题,两种型号沼气池的占地面积、使用农户数及造价见下表:型号占地面积(/个)使用农户数(户/个)造价(万元/个)已知可供建造沼气池的占地面积不超过,该村农户共有492户.(1)满足条件的方案共有几种?写出解答过程;(2)通过计算判断,哪种建造方案最省钱.22.(8分)如图,小明用自制的直角三角形纸板DEF测量树的高度1B.他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm.EF=30cm,测得边DF离地面的高度AC=1.5m,CD=10m,求树高AB.23.(8分)已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)证明ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.24.(8分)已知平行四边形ABCD的两边AB、BC的长是关于x的方程x2-mx+m2-14(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么平行四边形ABCD的周长是多少?25.(10分)随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷,在一次购物中,张华和李红都想从“微信”、“支付宝”、“银行卡”、“现金”四种支付方式中选一种方式进行支付.(1)张华用“微信”支付的概率是______.(2)请用画树状图或列表法求出两人恰好选择同一种支付方式的概率.(其中“微信”、“支付宝”、“银行卡”、“现金”分别用字母“A”“B”“C”“D”代替)26.(10分)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为分.前名选手的得分如下:根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为分),现得知号选手的综合成绩为分.序号笔试成绩/分面试成绩/分(1)求笔试成绩和面试成绩各占的百分比:(2)求出其余两名选手的综合成绩,并以综合成绩排序确定这三名选手的名次。
参考答案一、选择题(每小题3分,共30分)1、B【解析】
根据不等式的性质在不等式的两边同时除以3即可求出x的取值范围.【详解】在不等式的两边同时除以3得:x<-1.
故选:B.【点睛】本题考查了解简单不等式的能力,解不等式依据的是不等式的基本性质:
(1)不等式的两边同时加上(或减去)同一个数(或整式),不等号的方向不变;
(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;
(3)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.2、B【解析】
由数据可发现从第三项起每一项都等于根号下前两项的根号下的数字之和,由此规律即可求出横线上的数【详解】解:由题意得,一组数1,1,2,3,5,22=8,
则2=1+1,3+1+2,5=2+3,8=3+5,即从第三项起每一项都等于根号下前两项的根号下的数字之和,所以横线上的数是13,
【点睛】本题考查了归纳推理,难点在于发现其中的规律,考查观察、分析、归纳能力.3、D【解析】
先根据平均数计算公式列出算式进行计算,再根据平均数求出方差即可.【详解】一组数据:-1、2、3、1、0,则平均数=,方差=,故选D.【点睛】本题是对数据平均数和方差的考查,熟练掌握平均数和方差公式是解决本题的关键.4、C【解析】
根据反比例函数的定义列出方程且求解即可.【详解】解:是反比例函数,,,解之得.又因为图象在第二,四象限,所以,解得,即的值是.故选:.【点睛】对于反比例函数.(1),反比例函数图像分布在一、三象限;(2),反比例函数图像分布在第二、四象限内.5、B【解析】
证明AC∥DE,再由条件CE∥AD可证明四边形ACED是平行四边形;根据线段的垂直平分线证明AE=EB可得△BCE是等腰三角形;首先利用三角函数计算出AD=4,CD=2,再算出AB长可得四边形ACEB的周长是10+2,利用△ACB和△CBE的面积和可得四边形ACEB的面积.【详解】①∵∠ACB=90°,DE⊥BC,∴∠ACD=∠CDE=90°,∴AC∥DE,∵CE∥AD,∴四边形ACED是平行四边形,所以①正确;②∵D是BC的中点,DE⊥BC,∴EC=EB,∴△BCE是等腰三角形,所以②正确;③∵AC=2,∠ADC=30°,∴AD=4,CD=2,∵四边形ACED是平行四边形,∴CE=AD=4,∵CE=EB,∴EB=4,DB=2,∴CB=4,∴AB=,∴四边形ACEB的周长是10+2;所以③正确;④四边形ACEB的面积:×2×4+×4×2=8,所以④错误,故选:C.【点睛】考查了平行四边形的判定和性质、等腰三角形的判定和性质、特殊角三角函数、勾股定理、线段的垂直平分线的性质等知识,解题的关键是熟练掌握平行四边形的判定方法和等腰三角形的判定方法.6、A【解析】
首先设平行四边形中两个内角的度数分别是x°,2x°,由平行四边形的邻角互补,即可得方程x+2x=180,继而求得答案.【详解】设平行四边形中两个内角的度数分别是x°,2x°,则x+2x=180,解得:x=60,∴其中较小的内角是:60°.故选A.【点睛】此题考查平行四边形的性质,解题关键在于利用平行四边形的邻角互补.7、C【解析】
根据菱形的面积等于对角线乘积的一半计算即可.【详解】菱形的面积为:6×8÷2=24.故选C.【点睛】本题考查了菱形的性质,菱形的性质有:具有平行四边形的性质;菱形的四条边相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积等于对角线乘积的一半,菱形是轴对称图形,它有两条对称轴.8、B【解析】分析:根据折叠的性质可得∠E=∠B=60°,进而可证明△BEC是等边三角形,再根据平行四边形的性质可得:AD∥BC,所以可得∠EAF=60°,进而可证明△EFA是等边三角形,由等边三角形的性质可得∠EFA=∠DFC=60°,又因为∠D=∠B=60°,进而可证明△DFC是等边三角形,问题得解.详解:∵将△ABC沿对角线AC折叠,点B的对应点落在点E处,∴∠E=∠B=60°,∴△BEC是等边三角形,∵四边形ABCD是平行四边形,∴AD∥BC,∠D=∠B=60°,∴∠B=∠EAF=60°,∴△EFA是等边三角形,∵∠EFA=∠DFC=60°,∠D=∠B=60°,∴△DFC是等边三角形,∴图中等边三角形共有3个,故选B.点睛:本题考查了平行四边形的性质、折叠的性质以及等边三角形的判定和性质,解题的关键是熟记等边三角形的各种判定方法特别是经常用到的判定方法:三个角都相等的三角形是等边三角形.9、B【解析】解:根据题意:当x=﹣1时,方程左边=a﹣b+c,而a+c=b,即a﹣b+c=0,所以当x=﹣1时,方程ax2+bx+c=0成立.故x=﹣1是方程的一个根.故选B.10、C【解析】分析:根据使“分式和二次根式有意义的条件”进行分析解答即可.详解:∵式子在实数范围内有意义,∴,解得:.故选C.点睛:熟记:“使分式有意义的条件是:分母的值不能为0;使二次根式有意义的条件是:被开方数为非负数”是解答本题的关键.二、填空题(每小题3分,共24分)11、-3【解析】
把坐标带入解析式即可求出.【详解】y=kx+b的图象经过点P(﹣2,3),∴3=﹣2k+b,∴2k﹣b=﹣3,故答案为﹣3;【点睛】此题主要考查一次函数的性质,解题的关键是熟知一次函数的图像.12、2【解析】
根据线段垂直平分线的性质可知AB=OB,由此推出△ABC的周长=OC+AC,设OC=a,AC=b,根据勾股定理和函数解析式即可得到关于a、b的方程组,解之即可求出△ABC的周长.【详解】解:∵OA的垂直平分线交OC于B,
∴AB=OB,
∴△ABC的周长=OC+AC,
设OC=a,AC=b,
则:,
解得a+b=2,
即△ABC的周长=OC+AC=2cm.
故答案为:2cm.【点睛】本题考查反比例函数图象性质和线段中垂线性质,以及勾股定理的综合应用,关键是一个转换思想,即把求△ABC的周长转换成求OC+AC即可解决问题.13、【解析】
已知点,根据两点关于轴的对称,横坐标不变,纵坐标互为相反数,即可得出Q的坐标.【详解】∵点)与点Q关于轴对称,∴点Q的坐标是:.故答案为【点睛】考查关于轴对称的点的坐标特征,横坐标不变,纵坐标互为相反数.14、2.4【解析】
根据已知得出四边形AEPF是矩形,得出EF=AP,要使EF最小,只要AP最小即可,根据垂线段最短得出即可.【详解】连接AP,∵∠A=90°,PE⊥AB,PF⊥AC,∴∠A=∠AEP=∠AFP=90°,∴四边形AFPE是矩形,∴EF=AP,要使EF最小,只要AP最小即可,过A作AP⊥BC于P,此时AP最小,在Rt△BAC中,∠A=90°,AC=4,AB=3,由勾股定理得:BC=5,由三角形面积公式得:12×4=12×5×AP,∴AP=2.4,即EF=2.4【点睛】此题考查勾股定理,矩形的判定与性质,解题关键在于得出四边形AEPF是矩形15、丙【解析】
根据方差的定义,方差越小数据越稳定,即可得出答案.【详解】∵S甲2=0.53,S乙2=0.51,S丙2=0.43,∴S甲2>S乙2>S丙2,∴三人中成绩最稳定的是丙;故答案为:丙.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.16、【解析】
根据勾股定理求出AB的长度,然后由直角三角形斜边上的中线的性质回答问题.【详解】解:在Rt△ABO中,AO=12,BO=5,∴,∵直角三角形斜边上的中线等于斜边的一半,∴AB上的中点到墙角O的距离总是定值,此定值为.故答案为:.【点睛】本题考查了勾股定理的应用,以及斜边上的中线等于斜边的一半,解题的关键是在直角三角形中弄清直角边和斜边.17、4【解析】
把x=代入各函数求出对应的y值,即可求解.【详解】x=代入得x=代入得∴4【点睛】此题主要考查反比例函数的性质,解题的关键是根据题意代入函数关系式进行求解.18、.【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.三、解答题(共66分)19、(1)m=﹣2;(2)m=4.【解析】
(1)根据图象经过原点b=0,列出关于m的方程解方程求m的值,再根据k≠0舍去不符合题意的解;(2)根据两直线平行k值相等,得出关于m的方程,解方程即可.【详解】(1)∵一次函数图象经过原点,∴﹣3m2+12=0且m﹣2≠0,解﹣3m2+12=0得m=±2,又由m﹣2≠0得m≠2,∴m=-2;(2)∵函数图象平行于直线y=2x,∴m﹣2=2,解得m=4.【点睛】本题考查一次函数与坐标轴交点问题,根据一次函数的增减性求参数.(1)中需注意一次函数的一次项系数k≠0;(2)中理解两个一次函数平行k值相等是解题关键.20、(1);(2)2和4.【解析】
(1)利用平均数的计算公式列出关于x的方程,求出x即可求出答案;(2)根据众数的定义即可求出答案.【详解】解:(1)由平均数为1,得,解得:.(2)当时,这组数据是2,2,1,4,4,其中有两个2,也有两个4,是出现次数最多的,∴这组数据的众数是2和4.【点睛】本题考查平均数和众数,熟练掌握平均数的计算公式和众数的定义是解决本题的关键.在(2)中,一定记住一组数的众数有可能有几个.21、(1)满足条件的方案有三种,方案一建造型沼气池7个,型沼气池13个;方案二建造型沼气池8个,型沼气池12个;方案三建造型沼气池9个,型沼气池11个,见解析;(2)方案三最省钱,见解析【解析】
(1)关系式为:A型沼气池占地面积+B型沼气池占地面积≤365;A型沼气池能用的户数+B型沼气池能用的户数≥492;
(2)由(1)得到情况进行分析.【详解】解(1)设建设型沼气池个,型沼气池个,根据题意列不等式组得解不等式组得:∴满足条件的方案有三种,方案一建造型沼气池7个,型沼气池13个方案二建造型沼气池8个,型沼气池12个方案三建造型沼气池9个,型沼气池11个(2)方案一的造价为:万元方案二的造价为万元方案三的造价为:2×9+3×11=51万元所以选择方案三建造9个,11个最省钱【点睛】此题考查一元一次不等式的应用,解题关键在于根据题意列出不等式.22、9米【解析】
利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB.【详解】解:∵∠DEF=∠BCD=90°∠D=∠D∴△DEF∽△DCB
∴,∵DE=40cm=0.4m,EF=30cm=0.3m,AC=1.5m,CD=10m,∴,∴BC=7.5米,∴AB=AC+BC=1.5+7.5=9米.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.23、(1)证明见解析;(2).【解析】
(1)先证得△ADB≌△CDB求得∠BCD=∠BAD,从而得到∠ADF=∠BAD,所以AB∥FD,因为BD⊥AC,AF⊥AC,所以AF∥BD,即可证得.(2)先证得平行四边形是菱形,然后根据勾股定理即可求得.【详解】(1)证明:∵BD垂直平分AC,∴AB=BC,AD=DC,在△ADB与△CDB中,,∴△ADB≌△CDB(SSS)∴∠BCD=∠BAD,∵∠BCD=∠ADF,∴∠BAD=∠ADF,∴AB∥FD,∵BD⊥AC,AF⊥AC,∴AF∥BD,∴四边形ABDF是平行四边形,(2)解:∵四边形ABDF是平行四边形,AF=DF=5,∴▱ABDF是菱形,∴AB=BD=5,∵AD=6,设BE=x,则DE=5-x,∴AB2-BE2=AD2-DE2,即52-x2=62-(5-x)2解得:x=,∴,∴AC=2AE=.考点:1.平行四边形的判定;2.线段垂直平分线的性质;3.勾股定理.24、(1)m=1时,四边形ABCD是菱形,菱形ABCD的边长是12【解析】试题分析:(1)∵四边形ABCD是菱形,∴AB=AD,∴△=0,即m
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 餐厅前台服务总结
- 酷咖食品科技产业园建设项目可行性研究报告模板-立项拿地
- 10月石家庄房地产市场调研总结报告
- 2025-2030全球环锭细纱机单锭检测系统行业调研及趋势分析报告
- 2025年全球及中国有机天然肥料行业头部企业市场占有率及排名调研报告
- 2025年全球及中国风冷单螺杆式冷水机组行业头部企业市场占有率及排名调研报告
- 2025年全球及中国航空航天设备零部件用超声波清洗机行业头部企业市场占有率及排名调研报告
- 2025年全球及中国网红孵化服务行业头部企业市场占有率及排名调研报告
- 2025-2030全球电池护照(DDP)行业调研及趋势分析报告
- 2025年全球及中国冷加工喷丸机行业头部企业市场占有率及排名调研报告
- 苏教版四年级数学下册第三单元第二课时《常见的数量关系》课件
- 浙江省台州市2021-2022学年高一上学期期末质量评估政治试题 含解析
- 宁夏“8·19”较大爆燃事故调查报告
- 中国高血压防治指南(2024年修订版)解读课件
- 2024年浙江省中考科学试卷
- 初三科目综合模拟卷
- 2024年全国高考新课标卷物理真题(含答案)
- 劳动合同薪酬与绩效约定书
- 消除医疗歧视管理制度
- 足疗店营销策划方案
- 学校安全一岗双责
评论
0/150
提交评论