四川省射洪市2022-2023学年八年级数学第二学期期末复习检测模拟试题含解析_第1页
四川省射洪市2022-2023学年八年级数学第二学期期末复习检测模拟试题含解析_第2页
四川省射洪市2022-2023学年八年级数学第二学期期末复习检测模拟试题含解析_第3页
四川省射洪市2022-2023学年八年级数学第二学期期末复习检测模拟试题含解析_第4页
四川省射洪市2022-2023学年八年级数学第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.某班实行每周量化考核制,学期末对考核成绩进行统计,结果显示甲、乙两组的平均成绩相同,方差分别是S2甲=36,S2乙=30,则两组成绩的稳定性()A.甲组比乙组的成绩稳定 B.乙组比甲组的成绩稳定C.甲、乙两组的成绩一样稳定 D.无法确定2.大肠杆菌的长度平均约为0.0000014米,把这个数用科学记数表示正确的是()米.A.1.4×106 B.1.4×10﹣5 C.14×10﹣7 D.1.4×10﹣63.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,AB=6cm,BC=8cm,则△AEF的周长是()A.14cm B.8cm C.9cm D.10cm4.已知图2是由图1七巧板拼成的数字“0”,己知正方形ABCD的边长为4,则六边形EFGHMN的周长为()A. B. C. D.125.若x=3+122019,y=3-122019,则A.12 B.8 C.23 D.20196.已知,,则的值为()A.-2 B.1 C.-1 D.27.下列函数,y随x增大而减小的是()A.y=xB.y=x8.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A.30° B.40° C.70° D.80°9.一个盒子中装有20颗蓝色幸运星,若干颗红色幸运星和15颗黄色幸运星,小明通过多次摸取幸运星试验后发现,摸取到红色幸运星的频率稳定在0.5左右,若小明在盒子中随机摸取一颗幸运星,则摸到黄色幸运星的可能性约为()A. B. C. D.10.如图所示,在平行四边形中,对角线相交于点,,,,则平行四边形的周长为()A. B.C. D.二、填空题(每小题3分,共24分)11.不等式组的最小整数解是___________.12.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,使点D恰好落在BC边上的F点处.已知折痕AE=105cm,且ECFC=13.分解因式:x3-9x14.平面直角坐标系xOy中,点A(x1,y1)与B(x2,y2),如果满足x1+x2=0,y1﹣y2=0,其中x1≠x2,则称点A与点B互为反等点.已知:点C(3,8)、G(﹣5,8),联结线段CG,如果在线段CG上存在两点P,Q互为反等点,那么点P的横坐标xP的取值范围是__.15.请写出“三个角都相等的三角形是等边三角形”的逆命题:_____.16.若一组数据4,a,7,8,3的平均数是5,则这组数据的中位数是________.17.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为_______cm.18.函数的自变量的取值范围是______.三、解答题(共66分)19.(10分)如图,从点A(0,4)出发的一束光,经x轴反射,过点C(6,4),求这束光从点A到点C所经过的路径长度.20.(6分)计算:(1)(2)已知,试求以a、b、c为三边的三角形的面积.21.(6分)在一次数学实践活动中,观测小组对某品牌节能饮水机进行了观察和记录,当观察到第分钟时,水温为,记录的相关数据如下表所示:第一次加热、降温过程…t(分钟)0102030405060708090100…y()204060801008066.757.15044.440…(饮水机功能说明:水温加热到时饮水机停止加热,水温开始下降,当降到时饮水机又自动开始加热)请根据上述信息解决下列问题:(1)根据表中数据在如图给出的坐标系中,描出相应的点;(2)选择适当的函数,分别求出第一次加热过程和第一次降温过程关于的函数关系式,并写出相应自变量的取值范围;(3)已知沏茶的最佳水温是,若18:00开启饮水机(初始水温)到当晚20:10,沏茶的最佳水温时间共有多少分钟?22.(8分)“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调査了部分学生,调查结果分为五种:A非常了解,B比较了解,C基本了解,D不太了解,E完全不知.实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图请根据以上信息,解答下列问题:(1)本次共调查了名学生,扇形统计图中D所对应扇形的圆心角为度;(2)把这幅条形统计图补充完整(画图后请标注相应的数据);(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有名.23.(8分)解下列方程:(1)=.(2)=1-.24.(8分)如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,求证:∠AEF=90°.25.(10分)如图,已知矩形ABCD,用直尺和圆规进行如下操作:①以点A为圆心,以AD的长为半径画弧交BC于点E;②连接AE,DE;③作DF⊥AE于点F.根据操作解答下列问题:(1)线段DF与AB的数量关系是.(2)若∠ADF=60°,求∠CDE的度数.26.(10分)如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)若∠A=40°,求∠DBC的度数;(2)若AE=6,△CBD的周长为20,求△ABC的周长.

参考答案一、选择题(每小题3分,共30分)1、B【解析】试题分析:方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.因此,∵30<36,∴乙组比甲组的成绩稳定.故选B.2、D【解析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为(为整数),与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】.故选:D.【点睛】本题主要考查了科学记数法的表示,熟练掌握相关表示方法是解决本题的关键.3、C【解析】

利用勾股定理列式求出AC,再根据矩形的对角线互相平分且相等求出OA=OD=AC,然后根据三角形的中位线平行于第三边并且等于第三边的一半可得EF=OD,再求出AF,AE,然后根据三角形的周长公式列式计算即可得解.【详解】由勾股定理得,AC==10cm∵四边形ABCD是矩形∴OA=OD=AC=×10=5cm∵点E、F分别是AO、AD的中点∴EF=OD=cmAF=×8=4cmAE=OA=cm∴△AEF的周长=+4+=9cm.故选C.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,矩形的性质,勾股定理,熟记定理与性质是解题的关键.4、B【解析】

根据正方形的边长以及七巧板的特点先求出七巧板各个图形的边长,继而即可求得六边形的周长.【详解】解:如图,七巧板各图形的边长如图所示,则六边形EFGHMN的周长为:2+2++2+2+2++2=10+4,故选B.【点睛】本题考查了正方形的面积、七巧板、周长的定义等,七巧板由下面七块板组成(完整图案为一正方形):五块等腰直角三角形(两块小型小三角形,一块中型三角形和两块大型三角形)、一块正方形和一块平行四边形,熟知七巧板中各块中的边长之间的关系是解题的关键.5、A【解析】

直接利用完全平方公式将原式变形进而把已知数据代入求出答案.【详解】x2+2xy+y2=(x+y)2,把x=3+122019原式=(3+122019=(23)2=1.故选A.【点睛】此题主要考查了二次根式的化简求值,正确运用公式将原式变形是解题关键.6、D【解析】

首先将所求式子进行因式分解,然后代入即可得解.【详解】将,,代入,得上式=,故选:D.【点睛】此题主要考查利用完全平方式进行因式分解求值,熟练掌握,即可解题.7、D【解析】试题分析:∵y=kx+b中,k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小,A选项中,k=1>0,故y的值随着x值的增大而增大;B选项中,k=1>0,故y的值随着x值的增大而增大;C选项中,k=1>0,故y的值随着x值的增大而增大;D选项中,k=-1<0,y的值随着x值的增大而减小;故选D.考点:一次函数的性质.8、A【解析】

由等腰△ABC中,AB=AC,∠A=40°,即可求得∠ABC的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.【详解】∵AB=AC,∠A=40°,∴∠ABC=∠C=(180°−∠A)÷2=70°,∵线段AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=∠ABC-∠ABE=30°,故选:A.【点睛】本题考查了线段垂直平分线的性质以及等腰三角形的性质,熟练掌握相关性质,运用数形结合思想是解题的关键.9、C【解析】

设袋中红色幸运星有x个,根据“摸取到红色幸运星的频率稳定在0.5左右”列出关于x的方程,解之可得袋中红色幸运星的个数,再根据频率的定义求解可得.【详解】解:设袋中红色幸运星有x个,根据题意,得:,解得:x=35,经检验:x=35是原分式方程的解,则袋中红色幸运星的个数为35个,若小明在盒子中随机摸取一颗幸运星,则摸到黄色幸运星的频率为,故选:C.【点睛】本题考查了频率的计算,解题的关键是设出求出红色幸运星的个数并熟记公式.10、D【解析】

由▱ABCD的对角线AC,BD相交于点O,AE=EB,易得DE是△ABC的中位线,即可求得BC的长,继而求得答案.【详解】∵▱ABCD的对角线AC,BD相交于点O,

∴OA=OC,AD=BC,AB=CD=5,

∵AE=EB,OE=3,

∴BC=2OE=6,

∴▱ABCD的周长=2×(AB+BC)=1.

故选:D.【点睛】此题考查了平行四边形的性质以及三角形中位线的性质.注意证得DE是△ABC的中位线是关键.二、填空题(每小题3分,共24分)11、-1【解析】

分别解两个不等式,得到不等式组的解集,再从解集中找到最小整数解.【详解】解不等式得,解不等式得∴不等式组的解集为∴不等式组的最小整数解为-1故答案为:-1.【点睛】本题考查求不等式组的最小整数解,熟练掌握解不等式,并由“大小小大取中间”确定不等式组的解集是解题的关键.12、72【解析】

根据矩形的性质可得AB=CD,AD=BC,∠B=∠D=90°,再根据翻折变换的性质可得∠AFE=∠D=90°,AD=AF,然后根据同角的余角相等求出∠BAF=∠EFC,然后根据ECFC=34,设CE=3k,CF=4k,推出EF=DE=5k,AB=CD=8k,利用相似三角形的性质求出BF,再在【详解】解:在矩形ABCD中,AB=CD,AD=BC,∠B=∠D=90°,∵△ADE沿AE对折,点D的对称点F恰好落在BC上,∴∠AFE=∠D=90°,AD=AF,∵∠EFC+∠AFB=180°-90°=90°,∠BAF+∠AFB=90°,∴∠BAF=∠EFC,∵ECFC∴设CE=3k,CF=4k,∴EF=DE=E∵∠BAF=∠EFC,且∠B=∠C=90°∴△ABF∽△FCE,∴ABFC=BF∴BF=6k,∴BC=BF+CF=10k=AD,∵AE2=AD2+DE2,∴500=100k2+25k2,∴k=2∴AB=CD=16cm,BC=AD=20cm,∴四边形ABCD的周长=72cm故答案为:72.【点睛】本题考查翻折变换,矩形的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题.13、x【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式。因此,先提取公因式x后继续应用平方差公式分解即可:x214、﹣3≤xP≤3,且xp≠1.【解析】

因为点P、Q是线段CG上的互反等点,推出点P在线段CC′上,由此可确定点P的横坐标xP的取值范围;【详解】如图,设C关于y轴的对称点C′(﹣3,8).由于点P与点Q互为反等点.又因为点P,Q是线段CG上的反等点,所以点P只能在线段CC′上,所点P的横坐标xP的取值范围为:﹣3≤xP≤3,且xp≠1.故答案为:﹣3≤xP≤3,且xp≠1.【点睛】本题考查坐标与图形的性质、点A与点B互为反等点的定义等知识,解题的关键是灵活运用所学知识解决问题,所以中考常创新题目.15、等边三角形的三个角都相等.【解析】

把原命题“三个角都相等的三角形是等边三角形”的题设与结论进行交换即可.【详解】“三个角都相等的三角形是等边三角形”的逆命题为“等边三角形的三个角都相等”,故答案为:等边三角形的三个角都相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.16、1【解析】

先根据平均数的定义求出x的值,然后根据中位数的定义求解.【详解】由题意可知,(1+a+7+8+3)÷5=5,a=3,这组数据从小到大排列3,3,1,7,8,所以,中位数是1.故答案是:1.【点睛】考查平均数与中位数的意义.平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.17、1.【解析】

∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=BD=12cm,在Rt△ACB中,AB===13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm),故答案为1.考点:旋转的性质.18、x>【解析】

根据分式、二次根式有意义的条件,确定x的范围即可.【详解】依题意有2x-3>2,解得x>.故该函数的自变量的取值范围是x>.故答案为:x>.【点睛】本题考查的知识点为:分式有意义,分母不为2.二次根式有意义,被开方数是非负数.自变量的取值范围必须使含有自变量的表达式都有意义:①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+23中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.例如y=x+2x-2.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.三、解答题(共66分)19、10.【解析】

首先过点B作BD⊥x轴于D,由A(0,4),C(6,4),即可得OA=CD=4,OD=6,由题意易证得△AOB≌△CDB,根据全等三角形即可得OB=BD=3,AB=CB,又由勾股定理即可求得这束光从点A到点C所经过的路径的长.【详解】解:如图,过点C作CD⊥x轴于点D,∵A(0,4),C(6,4),∴OA=CD=4,OD=6,由题意得,∠ABO=∠CBD,∵∠AOB=∠CDB=90°,∴△AOB≌△CDB,∴OB=BD=3,AB=CB,在Rt△AOB中,,∴这束光从点A到点C所经过的路径长度为AB+BC=10.【点睛】此题考查勾股定理,点的坐标,解题关键在于作辅助线.20、(1);(2)以a、b、c为三边的三角形的面积为1.【解析】

(1)先根据二次根式的乘除法则和完全平方公式计算,然后化简后合并即可;(2)利用非负数的性质得到a−1=0,b−2=0,c−=0,解得a=1,b=2,c=,利用勾股定理的逆定理得到以a、b、c为三边的三角形为直角三角形,其中c为斜边,然后根据三角形面积公式计算.【详解】解:(1)原式;(2)由题意得:,,,,,,,,,∴以a、b、c为三边的三角形是直角三角形.∴它的面积是.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了勾股定理的逆定理.21、(1)见解析;(2)第一次加热:,;第一次降温:,;(3)分钟.【解析】

(1)利用描点法画出图形即可;(2)利用待定系数法即可解决问题;(3)首先判断出而18:00至1:10共130分钟,饮水机加热一次,降温一次,再加热了一次的过程,分别求出加热过程中,降温过程中的最佳水温时间即可解决问题;【详解】解:(1)如图所示:(2)观察图象可知第一次加热过程的函数关系是一次函数,设解析式为y=kt+b,则有,解得:,∴第一次加热过程的函数关系是y=2x+1.(0≤t≤40)由图象可知第一次降温过程的函数关系是反比例函数,设y=,把(50,80)代入得到m=4000,∴第一次降温过程的函数关系是y=(40≤t≤100).(3)由题意可知,第二次加热观察时间为30分钟,结束加热是第130分钟,而18:00至1:10共130分钟,∴饮水机加热一次,降温一次,再加热了一次,把y=80代入y=2t+1,得到t=30,把y=90代入y=2x+1,得到t=35,∴一次加热过程出现的最佳水温时间为:35−30=5分钟,把y=80代入y=,得到t=50,把y=90代入y=,得到t=,∴一次降温出现的最佳水温时间为:50−=(分钟),∴18:00开启饮水机(初始水温1℃)到当晚1:10,沏茶的最佳水温时间共:+5×2=(分钟).【点睛】本题考查的是反比例函数的应用、一次函数的应用,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.22、(1)300;54;(2)条形统计图补充见解析;(3)1.【解析】

(1)从条形统计图中,可得到“B”的人数108人,从扇形统计图中可得“B”组占36%,用人数除以所占的百分比即可求出调查人数,求出“D”组所占整体的百分比,用360°去乘这个百分比即可得出D所对应扇形的圆心角度数;(2)用总人数乘以“C”组所占百分比求出“C”组的人数,再补全统计图;(3)求出“A”组所占的百分比,用样本估计总体进行计算即可.【详解】(1)共调查学生人数为:=300,扇形D比例:=15%,圆心角:=54°故答案为:300;54;(2)25%×300=75,条形统计图补充如下:(3)×800=1.故答案为:1.【点睛】本题考查条形统计图、扇形统计图的特点及制作方法,明确统计图中各个数据之间的关系是解决问题的关键,善于从两个统计图中获取相关数据是解决问题的前提.23、(1)无解;(2)x=-1.【解析】

(1)先去分母,再解一元一次方程,最后检验即可得答案;(2)方程两边同时乘以(2x-1)可得一元一次方程,解方程即可求出x的值,再检验即可得答案.【详解】(1)=两边同时乘以(x-1)得:3x+2=5,解得:x=1,检验:当x=1时,x-1=0,∴x=1不是原方程的解,∴原方程无解.(2)=1-两边同时乘以(2x-1)得:x=2x-1+2,解得:x=-1.检验:当x=-1时,2x-1=-3≠0,∴x=-1是原方程的解.【点睛】本题考查解分式方程,解分式方程的基本思路是把分式方程转化成整式方程,其具体做法是“去分母”,即方程两边同时乘以最简公分母.熟练掌握分式方程的解法是解题关键.24、证明见解析.【解析】试题分析:利用正方形的性质得出AB=BC=CD=DA,∠B=∠C=∠D=90°,设出边长为a,进一步利用勾股定理求得AE、EF、AF的长,再利用勾股定理逆定理判定即可.试题解析:证明:∵ABCD为正方形,∴AB=BC=CD=DA,∠B=∠C=∠D=90°.设AB=BC=CD=DA=a.∵E是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论