版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论①(BE+CF)=BC,②,③AD·EF,④AD≥EF,⑤AD与EF可能互相平分,其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个2.不等式组的解集是()A. B. C. D.3.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=50°,则∠OAB的度数为()A.40° B.50° C.60° D.70°4.在一次中学生田径运动会上,男子跳高项目的成绩统计如下:成绩人数28641表中表示成绩的一组数据中,众数和中位数分别是A., B., C., D.,5.如图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长是()A.52 B.42 C.76 D.726.下列一元二次方程中,有两个不相等实数根的是()A. B.C. D.7.如图,在△ABC中,AB=AC,直线l1∥l2,且分别与△ABC的两条边相交,若∠1=40°,∠2=23°,则∠C的度数为()A.40° B.50° C.63° D.67°8.如图,在△ABC中,BC=5,AC=8,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长等于()A.18 B.15 C.13 D.129.已知点A(x1,y1),B(x2,y2)是一次函数y=(m﹣1)x+2﹣m上任意两点,且当x1<x2时,y1>y2,则这个函数的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.在正方形ABCD的外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.450 B.600 C.750 D.1200二、填空题(每小题3分,共24分)11.将直线y=-2x+4向左平移2个单位,得到直线的函数解析式为___________12.在函数y=中,自变量x的取值范围是_____.13.不等式2x≥-4的解集是.14.正方形A1B1C1O,A2B2C2C1,A3B3C3C2……按如图所示放置,点A1、A2、A3……在直线y=x+1上,点C1、C2、C3……在x轴上,则A2019的坐标是___.15.下列4个分式:①;②;③;④,中最简分式有_____个.16.如图,某河堤的横断面是梯形ABCD,BC∥AD,已知背水坡CD的坡度i=1:2.4,CD长为13米,则河堤的高BE为米.17.二次函数的最大值是____________.18.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.三、解答题(共66分)19.(10分)小芳从家骑自行车去学校,所需时间()与骑车速度()之间的反比例函数关系如图.(1)小芳家与学校之间的距离是多少?(2)写出与的函数表达式;(3)若小芳点分从家出发,预计到校时间不超过点分,请你用函数的性质说明小芳的骑车速度至少为多少?20.(6分)为了从甲、乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验两人在相同条件下各射靶次,命中的环数如下:甲:,,,,,,,,,乙:,,,,,,,,,(1)分别计算两组数据的方差.(2)如果你是教练你会选拔谁参加比赛?为什么?21.(6分)计算:(1);(2).22.(8分)已知非零实数满足,求的值.23.(8分)在平面直角坐标系xOy中,直线y=﹣x+2与x轴、y轴分别交于A、B两点,直线BC交x轴负半轴于点C,∠BCA=30°,如图①.(1)求直线BC的解析式.(2)在图①中,过点A作x轴的垂线交直线CB于点D,若动点M从点A出发,沿射线AB方向以每秒个单位长度的速度运动,同时,动点N从点C出发,沿射线CB方向以每秒2个单位长度的速度运动,直线MN与直线AD交于点S,如图②,设运动时间为t秒,当△DSN≌△BOC时,求t的值.(3)若点M是直线AB在第二象限上的一点,点N、P分别在直线BC、直线AD上,是否存在以M、B、N、P为顶点的四边形是菱形.若存在,请直接写出点M的坐标;若不存在,请说明理由.24.(8分)已知,在菱形ABCD中,G是射线BC上的一动点(不与点B,C重合),连接AG,点E、F是AG上两点,连接DE,BF,且知∠ABF=∠AGB,∠AED=∠ABC.(1)若点G在边BC上,如图1,则:①△ADE与△BAF______;(填“全等”或“不全等”或“不一定全等”)②线段DE、BF、EF之间的数量关系是______;(2)若点G在边BC的延长线上,如图2,那么上面(1)②探究的结论还成立吗?如果成立,请给出证明;如果不成立,请说明这三条线段之间又怎样的数量关系,并给出你的证明.25.(10分)如图,△ABC的边AB=8,BC=5,AC=1.求BC边上的高.26.(10分)如图,某学校有一块长为30米,宽为10米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间及周边留有宽度相等的人行通道.若设计人行通道的宽度为2米,那么修建的两块矩形绿地的面积共为多少平方米?若要修建的两块矩形绿地的面积共为216平方米,求人行通道的宽度.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
解:∵Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∴AD=DC,∠EAD=∠C=45°,∠EDA=∠MDN-∠ADN=90°-∠ADN=∠FDC.∴△EDA≌△FDC(ASA).∴AE=CF.∴BE+CF=BE+AE=AB.在Rt△ABC中,根据勾股定理,得AB=BC.∴(BE+CF)=BC.∴结论①正确.设AB=AC=a,AE=b,则AF=BE=a-b.∴.∴.∴结论②正确.如图,过点E作EI⊥AD于点I,过点F作FG⊥AD于点G,过点F作FH⊥BC于点H,ADEF相交于点O.∵四边形GDHF是矩形,△AEI和△AGF是等腰直角三角形,∴EO≥EI(EF⊥AD时取等于)=FH=GD,OF≥GH(EF⊥AD时取等于)=AG.∴EF=EO+OF≥GD+AG=AD.∴结论④错误.∵△EDA≌△FDC,∴.∴结论③错误.又当EF是Rt△ABC中位线时,根据三角形中位线定理知AD与EF互相平分.∴结论⑤正确.综上所述,结论①②⑤正确.故选C.2、A【解析】
分别求出各不等式的解集,再求出其公共解集即可.【详解】解:
解不等式①得:x⩽2,
解不等式②得:x>−3,
∴不等式组的解集为:−3<x⩽2,
故选:A.【点睛】本题考查了解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3、A【解析】
首先根据题意得出平行四边形ABCD是矩形,进而求出∠OAB的度数.【详解】∵平行四边形ABCD的对角线AC,BD相交于点O,OA=OD,∴四边形ABCD是矩形,∵∠OAD=50°,∴∠OAB=40°.故选:A.【点睛】本题主要考查了平行四边形的性质,矩形的判定与性质,解题的关键是判断出四边形ABCD是矩形,此题难度不大.4、B【解析】
根据出现最多的数为众数解答;
按照从小到大的顺序排列,然后找出中间的一个数即为中位数.【详解】出现次数最多的数为1.55m,是众数;
21个数按照从小到大的顺序排列,中间一个是1.60m,所以中位数是1.60m.
故选B.【点睛】考查了众数,中位数的定义,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5、C【解析】解:依题意得,设“数学风车”中的四个直角三角形的斜边长为x,则x2=122+52=169,解得:x=1.故“数学风车”的周长是:(1+6)×4=2.故选C.6、B【解析】
根据一元二次方程根的判别式判断即可.【详解】解:A、x2+6x+9=0
△=62-4×9=36-36=0,
方程有两个相等实数根;
B、x2=x
x2-x=0
△=(-1)2-4×1×0=1>0
两个不相等实数根;
C、x2+3=2x
x2-2x+3=0
△=(-2)2-4×1×3=-8<0,
方程无实根;
D、(x-1)2+1=0
(x-1)2=-1,
则方程无实根;
故选:B.【点睛】本题考查一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.7、C【解析】
根据平行线的性质得到∠ABD=∠1=40°,∠CBD=∠2=23°,根据等腰三角形的性质即可得到结论.【详解】解:过B作BD//l∵l∴BD//l∴∠ABD=∠1=40°,∠CBD=∠2=23°,∴∠ABC=∠ABD+∠CBD=63°,∵AB=AC,∴∠C=∠ABC=63°,故选:C.【点睛】本题考查了平行线的性质和等腰三角形的性质,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.8、C【解析】
先根据线段垂直平分线的性质得出,故可得出的周长,由此即可得出结论.【详解】解:在中,,,是线段的垂直平分线,,的周长.故选:C.【点睛】本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.9、C【解析】
先根据时,,得到随的增大而减小,所以的比例系数小于,那么,解不等式即可求解.【详解】时,,随的增大而减小,函数图象从左往右下降,,,,即函数图象与轴交于正半轴,这个函数的图象不经过第三象限.故选:.【点睛】本题考查一次函数的图象性质:当,随的增大而增大;当时,随的增大而减小.10、B【解析】分析:根据正方形的性质及等边三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC.详解:∵四边形ABCD是正方形,∴AB=AD,又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°,∴AB=AE,∴∠ABE=∠AEB,∠BAE=90°+60°=150°,∴∠ABE=(180°-150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°.故选:B.点睛:本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出∠ABE=15°.二、填空题(每小题3分,共24分)11、【解析】
根据图象平移的规律,左加右减,上加下减,即可得到答案.【详解】解:由题意得,y=-2x+4=-2(x+2)+4,即y=-2x,故答案为:y=-2x.【点睛】本题主要考查了一次函数图象与几何变换,掌握一次函数图象是解题的关键.12、x≥﹣2且x≠1【解析】分析:根据使分式和二次根式有意义的条件进行分析解答即可.详解:∵要使y=有意义,∴,解得:且.故答案为:且.点睛:熟记:“二次根式有意义的条件是:被开方数是非负数;分式有意义的条件是:分母的值不为0”是正确解答本题的关键.13、x≥-1【解析】分析:已知不等式左右两边同时除以1后,即可求出解集.解答:解:1x≥-4,两边同时除以1得:x≥-1.故答案为x≥-1.14、(22008-1,22008)【解析】
先求出A1、A2、A3的坐标,找出规律,即可求解.【详解】∵直线y=x+1和y轴交于A1,∴A1的交点为(0,1)∵四边形A1B1C1O是正方形,∴OC1=OA1=1,把x=1代入直线得y=2,∴A2(1,2)同理A3(3,4)…∴An的坐标为(2n-1-1,2n-1)故A2019的坐标为(22008-1,22008)【点睛】此题主要考查一次函数的图像,解题的关键是根据题意找到规律进行求解.15、①④【解析】
根据最简分式的定义逐式分析即可.【详解】①是最简分式;②=,不是最简分式;③=,不是最简分式;④是最简分式.故答案为2.【点睛】本题考查了最简分式的识别,与最简分数的意义类似,当一个分式的分子与分母,除去1以外没有其它的公因式时,这样的分式叫做最简分式.16、1【解析】在Rt△ABE中,根据tan∠BAE的值,可得到BE、AE的比例关系,进而由勾股定理求得BE、AE的长,由此得解.解:作CF⊥AD于F点,则CF=BE,∵CD的坡度i=1:2.4=CF:FD,∴设CF=1x,则FD=12x,由题意得CF2+FD2=CD2即:(1x)2+(12x)2=132∴x=1,∴BE=CF=1故答案为1.本题主要考查的是锐角三角函数的定义和勾股定理的应用.17、-5【解析】
根据二次函数的性质求解即可.【详解】∵的a=-2<0,∴当x=1时,有最大值-5.故答案为-5.【点睛】本题考查了二次函数的最值:二次函数y=ax2+bx+c,当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=-时,y=;(2)当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=-时,y=.18、1或8【解析】
由平移的性质可知阴影部分为平行四边形,设A′D=x,根据题意阴影部分的面积为(12−x)×x,即x(12−x),当x(12−x)=32时,解得:x=1或x=8,所以AA′=8或AA′=1.【详解】设AA′=x,AC与A′B′相交于点E,∵△ACD是正方形ABCD剪开得到的,∴△ACD是等腰直角三角形,∴∠A=15∘,∴△AA′E是等腰直角三角形,∴A′E=AA′=x,A′D=AD−AA′=12−x,∵两个三角形重叠部分的面积为32,∴x(12−x)=32,整理得,x−12x+32=0,解得x=1,x=8,即移动的距离AA′等1或8.【点睛】本题考查正方形和图形的平移,熟练掌握计算法则是解题关键·.三、解答题(共66分)19、(1)1400;(2);(3)小芳的骑车速度至少为.【解析】
(1)直接利用反比例函数图象上点的坐标得出小芳家与学校之间的距离;(2)利用待定系数法求出反比例函数解析式;(3)利用y=8进而得出骑车的速度.【详解】(1)小芳家与学校之间的距离是:();(2)设,当时,,解得:,故与的函数表达式为:;(3)当时,,,在第一象限内随的增大而减小,小芳的骑车速度至少为.【点睛】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.20、(1),;(2)选拔乙参加比赛.理由见解析.【解析】
(1)先求出平均数,再根据方差的定义求解;(2)比较甲、乙两人的成绩的方差作出判断.【详解】解:(1),,,;(2)因为甲、乙两名同学射击环数的平均数相同,乙同学射击的方差小于甲同学的方差,所以乙同学的成绩较稳定,应选乙参加比赛.【点睛】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.21、(1)6;(2)【解析】分析:(1)根据二次根式的乘法进行计算即可;(2)首先化简各式进而合并同类项求出即可.详解:(1)(1)原式;(2)(π+1)0-+||=1-2+=1-;点睛:本题考查了二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.22、1【解析】
由题设知a≥3,化简原式得,根据非负数的性质先求出a,b的值,从而求得a+b的值.【详解】解:∵a≥3,
∴原等式可化为,∴b+2=0且(a-3)b2=0,
∴a=3,b=-2,
∴a+b=1.【点睛】本题考查了二次根式有意义的条件及非负数的性质,几个非负数的和为零,则每一个数都为零.23、(1)y=x+2;(2),t=秒或t=+4秒时,△DSN≌△BOC;(3)M(+4)或M()或M().【解析】
(1)求出B,C的坐标,由待定系数法可求出答案;(2)分别过点M,N作MQ⊥x轴,NP⊥x轴,垂足分别为点Q,P.分两种情况:(Ⅰ)当点M在线段AB上运动时,(Ⅱ)当点M在线段AB的延长线上运动时,由DS=BO=2,可得出t的方程,解得t的值即可得出答案;(3)设点M(a,﹣a+2),N(b,),P(2,c),点B(0,2),分三种情况:(Ⅰ)当以BM,BP为邻边构成菱形时,(Ⅱ)当以BP为对角线,BM为边构成菱形时,(Ⅲ)当以BM为对角线,BP为边构成菱形时,由菱形的性质可得出方程组,解方程组即可得出答案.【详解】解:(1)∵直线y=﹣x+2与x轴、y轴分别交于A、B两点,∴x=0时,y=2,y=0时,x=2,∴A(2,0),B(0,2),∴OB=AO=2,在Rt△COB中,∠BOC=90°,∠BCA=30°,∴OC=2,∴C(﹣2,0),设直线BC的解析式为y=kx+b,代入B,C两点的坐标得,,∴k=,b=2,∴直线BC的解析式为y=x+2;(2)分别过点M,N作MQ⊥x轴,NP⊥x轴,垂足分别为点Q,P.(Ⅰ)如图1,当点M在线段AB上运动时,∵CN=2t,AM=t,OB=OA=2,∠BOA=∠BOC=90°,∴∠BAO=∠ABO=45°,∵∠BCO=30°,∴NP=MQ=t,∵MQ⊥x轴,NP⊥x轴,∴∠NPQ=∠MQA=90°,NP∥MQ,∴四边形NPQM是矩形,∴NS∥x轴,∵AD⊥x轴,∴AS∥MQ∥y轴,∴四边形MQAS是矩形,∴AS=MQ=NP=t,∵NS∥x轴,AS∥MQ∥y轴,∴∠DNS=∠BCO,∠DSN=∠DAO=∠BOC=90°,∴当DS=BO=2时,△DSN≌△BOC(AAS),∵D(2,+2),∴DS=+2﹣t,∴+2﹣t=2,∴t=(秒);(Ⅱ)当点M在线段AB的延长线上运动时,如图2,同理可得,当DS=BO=2时,△DSN≌△BOC(AAS),∵DS=t﹣(+2),∴t﹣(+2)=2,∴t=+4(秒),综合以上可得,t=秒或t=+4秒时,△DSN≌△BOC.(3)存在以M、B、N、P为顶点的四边形是菱形:M(﹣2﹣2,2+4)或M(﹣2﹣4,2+6)或M(﹣2+2,2).∵M是直线AB在第二象限上的一点,点N,P分别在直线BC,直线AD上,∴设点M(a,﹣a+2),N(b,b+2),P(2,c),点B(0,2),(Ⅰ)当以BM,BP为邻边构成菱形时,如图3,∵∠CBO=60°,∠OBA=∠OAB=∠PAF=45°,∴∠DBA=∠MBN=∠PBN=75°,∴∠MBE=45°,∠PBF=30°,∴MB=ME,PF=AP,PB=2PF=AP,∵四边形BMNP是菱形,∴,解得,a=﹣2﹣2,∴M(﹣2﹣2,2+4)(此时点N与点C重合),(Ⅱ)当以BP为对角线,BM为边构成菱形时,如图4,过点B作EF∥x轴,ME⊥EF,NF⊥EF,同(Ⅰ)可知,∠MBE=45°,∠NBF=30°,由四边形BMNP是菱形和BM=BN得:,解得:a=﹣2﹣4,∴M(﹣2﹣4,2+6),(Ⅲ)当以BM为对角线,BP为边构成菱形时,如图5,作NE⊥y轴,BF⊥AD,∴∠BNE=30°,∠PBF=60°,由四边形BMNP是菱形和BN=BP得,,解得:a=﹣2+2,∴M(﹣2+2,2).综合上以得出,当以M、B、N、P为顶点的四边形是菱形时,点M的坐标为:M(﹣2﹣2,2+4)或M(﹣2﹣4,2+6)或M(﹣2+2,2).【点睛】本题考查了待定系数法求函数解析式,动点问题与全等结合,菱形探究,熟练掌握相关方法是解题的关键.24、(1)①全等;②DE=BF+EF;(2)DE=BF-EF,见解析【解析】
(1)①根据菱形的性质得到AB=AD,AD∥BC,由平行线的性质得到∠BGA=∠DAE,等量代换得到∠BAF=∠ADE,求得∠ABF=∠DAE,根据全等三角形的判定定理即可得到结论;②根据全等三角形的性质得到AE=BF,DE=AF,根据线段的和差即可得到结论.(2)与(1)同理证△ABF≌△DAE得AE=BF,DE=AF,由AF=A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度集装箱运输企业信用评价与风险管理合同3篇
- 二零二五年环保节能型监控设备采购与技术支持合同2篇
- 二零二五版房屋租赁及转让合同全方位权益创新协议2篇
- 二零二五版文化创意产业园区使用权转让合同3篇
- 二零二五年度国际公路运输代理合同2篇
- 二零二五版城市绿化苗木租赁合同3篇
- 二零二五版环保设备质押贷款合同模板3篇
- 二零二五年度高级管理人员出差责任免除服务合同范本2篇
- 二零二五版体育行业劳动合同管理规范及运动员权益保障协议3篇
- 二零二五年度节水减排供水合同范本3篇
- 2023年山东省青岛市中考化学试题(含答案解析)
- 商业计划书(BP)产品与服务的撰写秘籍
- 安徽华塑股份有限公司年产 4万吨氯化石蜡项目环境影响报告书
- 公司章程(二个股东模板)
- 世界奥林匹克数学竞赛6年级试题
- 药用植物学-课件
- 文化差异与跨文化交际课件(完整版)
- 国货彩瞳美妆化消费趋势洞察报告
- 云南省就业创业失业登记申请表
- UL_标准(1026)家用电器中文版本
- 国网三个项目部标准化手册(课堂PPT)
评论
0/150
提交评论