浙江嵊州蒋镇学校2023年数学八下期末考试模拟试题含解析_第1页
浙江嵊州蒋镇学校2023年数学八下期末考试模拟试题含解析_第2页
浙江嵊州蒋镇学校2023年数学八下期末考试模拟试题含解析_第3页
浙江嵊州蒋镇学校2023年数学八下期末考试模拟试题含解析_第4页
浙江嵊州蒋镇学校2023年数学八下期末考试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC的角平分线AF与AB的垂直平分线DF交于点F,连接CF,BF,则∠BCF的度数为()A.30° B.40° C.50° D.45°2.下列各式中,y不是x的函数的是A. B. C. D.3.下列函数中,y随x增大而减小的是()A.y=x-1 B.y=-2x+3 C.y=2x-1 D.y=4.若样本数据3,4,2,6,x的平均数为5,则这个样本的方差是()A.3 B.5 C.8 D.25.关于x的不等式2x-a≤-1的解集在数轴上表示如下,则a的取值范围是()A.a≤-1 B.a≤-2 C.a=1 D.a=-26.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果以固定的流量把水蓄满蓄水池,下面的图象能大致表示水的深度h和注水时间t之间关系的是()A. B.C. D.7.如图,在△ABC中,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,若∠BAD=45°,则∠B的度数为()A.75° B.65° C.55° D.45°8.给出下列几组数:①4,5,6;②8,15,16;③n2-1,2n,n2+1;④m2-n2,2mn,m2+n2(m>n>0).其中—定能组成直角三角形三边长的是().A.①②B.③④C.①③④D.④9.一次函数的图象经过()A.一、二、三象限 B.一、二、四象限C.二、三、四象限 D.一、三、四象限10.若关于x的一元一次不等式组有解,则m的取值范围为A. B. C. D.二、填空题(每小题3分,共24分)11.对于实数,我们用符号表示两数中较小的数,如.因此,________;若,则________.12.观察下列各式:(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1,根据前面各式的规律可得(x-1)(xn+xn-1+…+x+1)=______(其中n为正整数).13.如图是一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②′,…依此类推,若正方形①的边长为64m,则正方形⑨的边长为________cm.14.若,则=_____.15.一次函数y=kx+b(k,b是常数,k≠0)图象如图所示,则不等式kx+b>0的解集是_____.16.张老师公布班上6名同学的数学竞赛成绩时,有意公布了5个人的得分:78,92,61,85,75,又公布了6个人的平均分:80,还有一个未公布,这个未公布的得分是_____.17._____.18.如图,在△ABC中,AB=9cm,AC=12cm,BC=15cm,M是BC边上的动点,MD⊥AB,ME⊥AC,垂足分别是D、E,线段DE的最小值是____________cm.三、解答题(共66分)19.(10分)A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运20千克,A型机器人搬运1000千克所用时间与B型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?20.(6分)如图,在△ABC中,E点是AC的中点,其中BD=2,DC=6,BC=2,AD=,求DE的长.21.(6分)计算:(1)

;(2)22.(8分)已知矩形中,两条对角线的交点为.(1)如图1,若点是上的一个动点,过点作于点,于点,于点,试证明:;(2)如图②,若点在的延长线上,其它条件和(1)相同,则三者之间具有怎样的数量关系,请写出你的结论并证明.23.(8分)如图,将平行四边形ABCD的AD边延长至点E,使DE=AD,连接CE,F是BC边的中点,连接FD.求证:四边形CEDF是平行四边形.24.(8分)如图,在四边形中,,是的中点,,,于点.(1)求证:四边形是菱形;(2)若,,求的长.25.(10分)如图,在中,,,,点、分别在,上,连接.(1)将沿折叠,使点落在边上的点处,如图1,若,求的长;(2)将沿折叠,使点落在边上的点处,如图2,若.①求的长;②求四边形的面积;(3)若点在射线上,点在边上,点关于所在直线的对称点为点,问:是否存在以、为对边的平行四边形,若存在,求出的长;若不存在,请说明理由.26.(10分)如图,在中,,,,点D为BC边上一点,且BD=2AD,,求的周长(保留根号).

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据线段垂直平分线的意义得FA=FB,由∠BAC=50°,得出∠ABC=∠ACB=65°,由角平分线的性质推知∠BAF=25°,∠FBE=40°,延长AF交BC于点E,AE⊥BC,根据等腰三角形的“三线合一”的性质得出:∠BFE=50°,∠CFE=50°,即可解出∠BCF的度数.【详解】延长∠BAC的角平分线AF交BC于点E,

∵AF与AB的垂直平分线DF交于点F,

∴FA=FB,

∵AB=AC,∠BAC=50°,

∴∠ABC=∠ACB=65°

∴∠BAF=25°,∠FBE=40°,

∴AE⊥BC,

∴∠CFE=∠BFE=50°,

∴∠BCF=∠FBE=40°.

故选:B.【点睛】本题主要考查了等腰三角形的性质和线段垂直平分线的性质,熟练掌握性质的内容是解答本题的关键.2、D【解析】

在运动变化过程中,有两个变量x和y,对于x的每一个值y都有唯一确定的值与之对应,那么y是x的函数,x是自变量.【详解】A.,B.,C.,对于x的每一个值,y都有唯一确定的值与之对应,符合函数的定义,不符合题意,D.,对于x的每一个值,y都有两个确定的值与之对应,故不是函数,本选项符合题意.故选:D【点睛】本题考核知识点:函数.解题关键点:理解函数的定义.3、B【解析】

∵函数(y=kx+b)中y随x增大而减小,∴k<0,∵只有B选项k=-2<0,其它选项都大于0,∴B选项是正确.故选B.4、C【解析】

先由平均数是5计算出x的值,再计算方差.【详解】解:∵数据3,4,2,6,x的平均数为5,∴,解得:x=10,则方差为×[(3﹣5)2+(4﹣5)2+(2﹣5)2+(6﹣5)2+(10﹣5)2]=8,故选:C.【点睛】本题考查的是平均数和方差的求法.计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.5、C【解析】

先根据在数轴上表示不等式解集的方法求出不等式的解集,再列出关于a的方程,求出a的取值范围即可.【详解】解:由数轴上表示不等式解集的方法可知,此不等式的解集为x≤0,解不等式2x-a≤-1得,x≤a-12,即a-12=0,解得a=1.故选【点睛】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.6、C【解析】

首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,每一段h随t的增大而增大,增大的速度是先快后慢.故选C.【点睛】此题考查了函数的图象,根据几何图形的性质确定函数的图象和函数图象的作图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.7、A【解析】

由基本作图得到MN垂直平分AC,则DA=DC,所以∠DAC=∠C=30°,然后根据三角形内角和计算∠B的度数.【详解】解:由作法得MN垂直平分AC,

∴DA=DC,

∴∠DAC=∠C=30°,

∴∠BAC=∠BAD+∠DAC=45°+30°=75°,

∵∠B+∠C+∠BAC=180°,

∴∠B=180°-75°-30°=75°.

故选:A.【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).8、D【解析】①42+52≠62,∴不能组成直角三角形;②82+152≠162,∴不能组成直角三角形;③当n=1时,三边长为:0、2、2,不能组成直角三角形;④(m2-n2)2+(2mn)2=(m2+n2)2,且m>n>0,∴能组成直角三角形.故选D.点睛:本题关键在于勾股定理逆定理的运用.9、D【解析】

根据一次函数的解析式得出k及b的符号,再根据一次函数的性质进行解答即可.【详解】解:∵一次函数中k=2>0,b=-4<0,

∴此函数的图象经过一、三、四象限.

故选:D.【点睛】本题考查的是一次函数的性质,正确理解一次函数y=kx+b(k≠0)的图象与k,b的关系是解题的关键.10、C【解析】

求出两个不等式的解集,再根据有解列出不等式组求解即可:【详解】解,∵不等式组有解,∴2m>2﹣m.∴.故选C.二、填空题(每小题3分,共24分)11、2或-1.【解析】①∵--,∴min{-,-}=-;②∵min{(x−1)2,x2}=1,∴当x>0.5时,(x−1)2=1,∴x−1=±1,∴x−1=1,x−1=−1,解得:x1=2,x2=0(不合题意,舍去),当x⩽0.5时,x2=1,解得:x1=1(不合题意,舍去),x2=−1,12、xn+1-1【解析】观察其右边的结果:第一个是x2-1;第二个是x3-1;…依此类推,则第n个的结果即可求得.(x-1)(xn+xn-1+…x+1)=xn+1-1.13、4【解析】

第一个正方形的边长为64cm,则第二个正方形的边长为64×cm,第三个正方形的边长为64×()2cm,依此类推,通过找规律求解.【详解】根据题意:第一个正方形的边长为64cm;第二个正方形的边长为:64×=32cm;第三个正方形的边长为:64×()2cm,…此后,每一个正方形的边长是上一个正方形的边长的,所以第9个正方形的边长为64×()9-1=4cm,故答案为4【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.14、【解析】

设=m,则有x=3m,y=4m,z=5m,代入原式即可得出答案.【详解】解:设=m,∴x=3m,y=4m,z=5m,代入原式得:.故答案为.【点睛】本题考查了代数式求值和等比例的性质,掌握并灵活运用等比例性质是解答本题的关键.15、x>-2【解析】试题解析:根据图象可知:当x>-2时,一次函数y=kx+b的图象在x轴的上方.即kx+b>0.考点:一次函数与一元一次不等式.16、1.【解析】

首先设这个未公布的得分是x,根据算术平均数公式可得关于x的方程,解方程即可求得答案.【详解】设这个未公布的得分是x,则:,解得:x=1,故答案为:1.【点睛】本题考查了算术平均数,关键是掌握对于n个数x1,x2,…,xn,则就叫做这n个数的算术平均数.17、【解析】

原式化为最简二次根式,合并即可得到结果.【详解】解:原式=+2=3.故答案为3【点睛】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.18、7.2【解析】试题分析:根据勾股定理的逆定理求出∠A=90°,根据矩形的判定得出四边形ADME是矩形,根据矩形的性质得出DE=AM,求出AM的最小值即可.解:∵在△ABC中,AB=6cm,AC=1cm,BC=10cm,∴BC2=AB2+AC2,∴∠A=90°,∵MD⊥AB,ME⊥AC,∴∠A=∠ADM=∠AEM=90°,∴四边形ADME是矩形,∴DE=AM,当AM⊥BC时,AM的长最短,根据三角形的面积公式得:AB×AC=BC×AM,∴6×1=10AM,AM=4.1(cm),即DE的最小值是4.1cm.故答案为4.1.考点:矩形的判定与性质;垂线段最短;勾股定理的逆定理.三、解答题(共66分)19、A型机器人每小时搬运化工原料100千克,则B型机器人每小时搬运80千克.【解析】

设A型机器人每小时搬运x千克化工原料,列出方程求解即可.【详解】解:设A型机器人每小时搬运x千克化工原料,则解得.经检验是原方程的解,则x-20=80所以A型每小时搬100千克,B型每小时搬80千克.20、【解析】

根据勾股定理的逆定理求出∠BDC=90°,求出线段AC长,根据直角三角形斜边上中线性质求出即可.【详解】∵BD2+CD2=22+62=(2)2=BC2,∴△BDC为直角三角形,∠BDC=90°,在Rt△ADC中,∵CD=6,AD=2,∴AC2=(2)2+62=60,∴AC=2,∵E点为AC的中点,∴DE=AC=.【点睛】本题考查了勾股定理、勾股定理的逆定理、直角三角形斜边上中线性质等知识点,能求出△ADC是直角三角形是解此题的关键.21、(1)10;(2)【解析】

根据二次根式的混合运算法则进行计算,即可解答.【详解】(1)原式=;(2)==;【点睛】此题考查二次根式的混合运算,解题关键在于掌握运算法则.22、(1)证明见解析;(2),证明见解析【解析】

(1)过作于点,根据矩形的判定和性质、全等三角形的判定和性质进行推导即可得证结论;(2)先猜想结论为,过作于点,根据矩形的判定和性质、角平分线的性质进行推导即可得证猜想.【详解】解:证明:(1)过作于点,如图:∵,∴四边形是矩形∴,∴∵四边形是矩形∴,且互相平分∴∴∵,∴∵∴∴∴,即.(2)结论:证明:过作于点,如图:同理可证,∵,∴∴,即.【点睛】本题考查了矩形的判定和性质、全等三角形的判定和性质、角平分线的性质、线段.的和差等知识点,适当添加辅助线是解决问题的关键.23、见解析.【解析】

利用平行四边形的性质得出AD=BC,AD∥BC,进而利用已知得出DE=FC,DE∥FC,即可证得四边形CEDF是平行四边形.【详解】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵DE=AD,F是BC边的中点,∴FC=BC=AD=DE,又∵DE∥FC,∴四边形CEDF是平行四边形.【点睛】本题主要考查了平行四边形的判定与性质,熟练应用平行四边形的判定方法是解题关键.24、(1)详见解析;(2)【解析】

(1)由,可知四边形是平行四边形,由直角三角形中斜边的中线等于底边的一半可知,依据菱形的判定即可求证.(2)过A作于点H,AH为菱形的高,菱形的面积可用两种方式表示出来,而CD=CE,所以EF=AH,因而只要求出三角形ABC面积的两种求法确定AH即可.【详解】证明:(1)∵,,∴四边形是平行四边形.∵,E是的中点,∴=AD.∴四边形是菱形.(2)过A作于点H,∵,,,∴.∵,∴.∵点E是的中点,,四边形是菱形,∴.∵,∴.【点睛】本题主要考查了菱形的判定及菱形中的面积问题,能够熟练掌握菱形的判定定理、灵活的表示菱形、三角形的面积是解题的关键.25、(1);(2)①;②;(3)存在,或6.【解析】

(1)先判断出S△ABC=4S△AEF,再求出AB,判断出Rt△AEF∽△Rt△ABC,得出,代值即可得出结论;

(2)先判断出四边形AE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论