版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.分式有意义,则的取值范围是()A. B. C. D.2.抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的()A.中位数B.众数C.平均数D.方差3.若分式有意义,则x满足的条件是()A.x≠1的实数 B.x为任意实数 C.x≠1且x≠﹣1的实数 D.x=﹣14.如图,一次函数的图象交轴于点,交轴于点,点在线段上(不与点,重合),过点分别作和的垂线,垂足为.当矩形的面积为1时,点的坐标为()A. B. C.或 D.或5.函数y=3x﹣1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.一个正比例函数的图象经过点,则它的解析式为()A. B. C. D.7.如图,在4×4的正方形网格中,△ABC的顶点都在格点上,下列结论错误的是()A.AB=5 B.∠C=90° C.AC=2 D.∠A=30°8.直角三角形两条直角边的长分别为3和4,则斜边长为()A.4 B.5 C.6 D.109.如图,在矩形ABCD中,点M从点B出发沿BC向点C运动,点E、F别是AM、MC的中点,则EF的长随着M点的运动()A.不变 B.变长 C.变短 D.先变短再变长10.下列各等式正确的是()A. B.C. D.二、填空题(每小题3分,共24分)11.若分式方程无解,则等于___________12.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是_____.13.如图,直线y1=kx+b与直线y2=mx交于点P(1,m),则不等式mx>kx+b的解集是______14.如图的三边长分别为30,48,50,以它的三边中点为顶点组成第一个新三角形,再以第一个新三角形三边中点为顶点组成第二个新三角形,如此继续,则第6个新三角形的周长为______.15.如图在平面直角坐标系xOy中,直线l经过点A(-1,0),点A1,A2,A3,A4,A5,……按所示的规律排列在直线l上.若直线l上任意相邻两个点的横坐标都相差1、纵坐标也都相差1,若点An(n为正整数)的横坐标为2015,则n=___________.16.已知函数y=-x+m与y=mx-4的图象交点在y轴的负半轴上,那么,m的值为____.17.解方程:(1)2x2﹣5x+1=0(用配方法);(2)5(x﹣2)2=2(2﹣x).18.如图,EF⊥AD,将平行四边形ABCD沿着EF对折.设∠1的度数为n°,则∠C=______.(用含有n的代数式表示)三、解答题(共66分)19.(10分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?20.(6分)古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由两工程队先后接力完成.工作队每天整治12米,工程队每天整治8米,共用时20天.(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲:乙:根据甲、乙两名同学所列的方程组,请你分别指出未知数表示的意义,然后在方框中补全甲、乙两名同学所列的方程组:甲:x表示________________,y表示_______________;乙:x表示________________,y表示_______________.(2)求两工程队分别整治河道多少米.(写出完整的解答过程)21.(6分)如图,在△ABC中,CF⊥AB于点F,BE⊥AC于点E,M为BC的中点连接ME、MF、EF.(1)求证:△MEF是等腰三角形;(2)若∠A=,∠ABC=50°,求∠EMF的度数.22.(8分)如图,在等腰梯形ABCD中,,,,.点Р从点B出发沿折线段以每秒5个单位长的速度向点C匀速运动;点Q从点C出发沿线段CB方向以每秒3个单位长的速度匀速运动,过点O向上作射线OKIBC,交折线段于点E.点P、O同时开始运动,为点Р与点C重合时停止运动,点Q也随之停止.设点P、Q运动的时间是t秒.(1)点P到达终点C时,求t的值,并指出此时BQ的长;(2)当点Р运动到AD上时,t为何值能使?(3)t为何值时,四点P、Q、C、E成为一个平行四边形的顶点?(4)能为直角三角形时t的取值范围________.(直接写出结果)(注:备用图不够用可以另外画)23.(8分)如图.已知A、B两点的坐标分别为A(0,),B(2,0).直线AB与反比例函数的图象交于点C和点D(1,a).(1)求直线AB和反比例函数的解析式.(2)求∠ACO的度数.24.(8分)分解因式:2x2﹣12x+1.25.(10分)某汽车租凭公司要购买轿车和面包车共辆,其中轿车最少要购买辆,轿车每辆万元,购头面包车每辆万元,公司可投入的购车资金不超过万元.(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车日租金为元,每辆面包车日租金为元,假设新购买的这辆汽车每日都可以全部租出,公司希望辆汽车的日租金最高,那么应该选择以上的哪种购买方案?且日租金最高为多少元?26.(10分)问题背景:对于形如这样的二次三项式,可以直接用完全平方公式将它分解成,对于二次三项式,就不能直接用完全平方公式分解因式了.此时常采用将加上一项,使它与的和成为一个完全平方式,再减去,整个式子的值不变,于是有:=====问题解决:(1)请你按照上面的方法分解因式:;(2)已知一个长方形的面积为,长为,求这个长方形的宽.
参考答案一、选择题(每小题3分,共30分)1、A【解析】
本题主要考查分式有意义的条件:分母不能为0,分式有意义.【详解】分式有意义,则x+1≠0,即.故选:A【点睛】考核知识点:分式有意义的条件.理解定义是关键.2、A【解析】
7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,故选A.【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键.3、A【解析】
直接利用分式有意义的条件得出:x﹣1≠0,解出答案.【详解】解:∵分式有意义,∴x﹣1≠0,解得:x≠1.∴x满足的条件是:x≠1的实数.故选A.【点睛】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.4、C【解析】
设P(a,−2a+3),则利用矩形的性质列出关于a的方程,通过解方程求得a值,继而求得点P的坐标.【详解】解:∵点P在一次函数y=−2x+3的图象上,
∴可设P(a,−2a+3)(a>0),
由题意得
a(−2a+3)=2,
整理得:2a2−3a+2=0,
解得
a2=2,a2=,
∴−2a+3=2或−2a+3=2.
∴P(2,2)或时,矩形OCPD的面积为2.
故选:C.【点睛】本题考查了一次函数图象上点的坐标特征.一次函数图象上所有点的坐标都满足该函数关系式.5、B【解析】试题分析:根据一次函数的性质即可得到结果。,图象经过一、二、四象限,不经过第二象限,故选B.考点:本题考查的是一次函数的性质点评:解答本题的关键是熟练掌握一次函数的性质:当时,图象经过一、二、三象限;当时,图象经过一、三、四象限;当时,图象经过一、二、四象限;当时,图象经过二、三、四象限.6、C【解析】
设该正比例函数的解析式为y=kx(k≠0),再把点(−2,4)代入求出k的值即可.【详解】解:设该正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过点(−2,4),∴4=−2k,解得k=−2,∴这个正比例函数的表达式是y=−2x.故选:C.【点睛】本题考查的是待定系数法求正比例函数的解析式,熟知正比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.7、D【解析】
首先根据每个小正方形的边长为1,结合勾股定理求出AB、AC、BC的长,进而判断A、C的正误;再判断较短的两边的平方和与较长边的平方是否相等,进而可判断B的正误;在上步提示的基础上,判断BC与AB是否存在二倍关系,进而即可判断D的正误.【详解】∵每个小正方形的边长为1,根据勾股定理可得:AB=5,AC=2,BC=.故A、C正确;∵2+(2)2=52,∴△ABC是直角三角形,∴∠C=90°.故B正确;∵∠C=90°,AC=2BC,而非AB=2BC,∴∠A≠30°.故D错误.故选D.【点睛】本题考查的是三角形,熟练掌握三角形是解题的关键.8、B【解析】
利用勾股定理即可求出斜边长.【详解】由勾股定理得:斜边长为:=1.故选B.【点睛】本题考查了勾股定理;熟练掌握勾股定理,理解勾股定理的内容是解题的关键.9、A【解析】
由题意得EF为三角形AMC的中位线,由中位线的性质可得:EF的长恒等于定值AC的一半.【详解】解:∵E,F分别是AM,MC的中点,
∴,
∵A、C是定点,
∴AC的的长恒为定长,
∴无论M运动到哪个位置EF的长不变,
故选A.【点睛】此题考查的是三角形中位线的性质,即三角形的中位线平行且等于第三边的一半.10、B【解析】
解:选项A.,错误;选项B.,正确;选项C.,错误;选项D.,错误.故选B.【点睛】本题考查;;;;;;灵活应用上述公式的逆用是解题关键.二、填空题(每小题3分,共24分)11、【解析】
先去分母,把分式方程的增根代入去分母后的整式方程即可得到答案.【详解】解:,去分母得:,所以:,因为:方程的增根是,所以:此时,故答案为:.【点睛】本题考查分式方程无解时字母系数的取值,掌握把增根代入去分母后的整式方程是解题关键.12、【解析】过点D作DE⊥DP交BC的延长线于E,先判断出四边形DPBE是矩形,再根据等角的余角相等求出∠ADP=∠CDE,再利用“角角边”证明△ADP和△CDE全等,根据全等三角形对应边相等可得DE=DP,然后判断出四边形DPBE是正方形,再根据正方形的面积公式解答即可.解:如图,过点D作DE⊥DP交BC的延长线于E,
∵∠ADC=∠ABC=90°,
∴四边形DPBE是矩形,
∵∠CDE+∠CDP=90°,∠ADC=90°,
∴∠ADP+∠CDP=90°,
∴∠ADP=∠CDE,
∵DP⊥AB,
∴∠APD=90°,
∴∠APD=∠E=90°,
在△ADP和△CDE中,∠ADP=∠CDE,∠APD=∠E,AD=CD,∴△ADP≌△CDE(AAS),
∴DE=DP,四边形ABCD的面积=四边形DPBE的面积=18,
∴矩形DPBE是正方形,
∴DP=.
故答案为3.“点睛”本题考查了正方形的判定与性质,全等三角形的判定与性质,熟记各性质并作辅助线构造出全等三角形和正方形是解题的关键.13、x>1【解析】分析:根据两直线的交点坐标和函数的图象即可求出答案.详解:∵直线y1=kx+b与直线y2=mx交于点P(1,m),
∴不等式mx>kx+b的解集是x>1,
故答案为x>1.点睛:解答本题的关键是熟练掌握图象在上方的部分对应的函数值大,图象在下方的部分对应的函数值小.14、1【解析】
根据三角形中位线定理依次可求得第二个三角形和第三个三角形的周长,可找出规律,进而可求得第6个三角形的周长.【详解】如图,、F分别为AB、AC的中点,,同理可得,,,即的周长的周长,第二个三角形的周长是原三角形周长的,同理可得的周长的周长的周长的周长,第三个三角形的周长是原三角形周长的,第六个三角形的周长是原三角形周长的,原三角形的三边长为30,48,50,原三角形的周长为118,第一个新三角形的周长为64,第六个三角形的周长,故答案为:1.【点睛】本题考查三角形中位线定理,掌握三角形中位线平行第三边且等于第三边的一半是解题的关键.15、4031.【解析】试题分析:本题主要考查了一次函数图象上点的坐标特征,解题的关键是找出坐标的规律.观察①n为奇数时,横坐标纵坐标变化得出规律;②n为偶数时,横坐标纵坐标变化得出规律,再求解.试题解析:观察①n为奇数时,横坐标变化:-1+1,-1+2,-1+3,…-1+,纵坐标变化为:0-1,0-2,0-3,…-,②n为偶数时,横坐标变化:-1-1,-1-2,-1-3,…-1-,纵坐标变化为:1,2,3,…,∵点An(n为正整数)的横坐标为2015,∴-1+=2015,解得n=4031,故答案为4031.考点:一次函数图象上点的坐标特征.16、-1【解析】
根据题意,第二个函数图象与y轴的交点坐标也是第一个函数图象与y轴的交点坐标,然后求出第二个函数图象与y轴的交点坐标,代入第一个函数解析式计算即可求解.【详解】当x=0时,y=m•0-1=-1,
∴两函数图象与y轴的交点坐标为(0,-1),
把点(0,-1)代入第一个函数解析式得,m=-1.
故答案为:-1.【点睛】此题考查两直线相交的问题,根据第二个函数解析式求出交点坐标是解题的关键,也是本题的突破口.17、(1)x1=,x2=;(2)x1=2,x2=【解析】
(1)移项,系数化成1,配方,开方,即可得出两个一元一次方程,求出方程的解;(2)移项后分解因式,即可可得出两个一元一次方程,求出方程的解即可.【详解】解:(1),(2),,【点睛】本题考查了利用配方法、因式分解法解一元二次方程,正确计算是解题的关键.18、180°﹣n°【解析】
由四边形ABCD是平行四边形,可知∠B=180°﹣∠C;再由由折叠的性质可知,∠GHC=∠C,即可得∠GHB=180°﹣∠C;根据三角形的外角的性质可知∠1=∠GHB+∠B=360°﹣2∠C,即可得360°﹣2∠C=n°,由此求得∠C=180°﹣n°.【详解】∵四边形ABCD是平行四边形,∴∠B=180°﹣∠C,由折叠的性质可知,∠GHC=∠C,∴∠GHB=180°﹣∠C,由三角形的外角的性质可知,∠1=∠GHB+∠B=360°﹣2∠C,∴360°﹣2∠C=n°,解得,∠C=180°﹣n°,故答案为:180°﹣n°.【点睛】本题考查的是平行四边形的性质及图形翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.三、解答题(共66分)19、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.【解析】
(1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;(2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.【详解】(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,依题意有480x+10解得:x=30,经检验,x=30是原方程的解,x+10=30+10=40,答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)设他们可购买y棵乙种树苗,依题意有30×(1﹣10%)(50﹣y)+40y≤1500,解得y≤11713∵y为整数,∴y最大为11,答:他们最多可购买11棵乙种树苗.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找准等量关系与不等关系列出方程或不等式是解决问题的关键.20、(1)甲:表示工程队工作的天数,表示工程队工作的天数;乙:表示工程队整治河道的米数,表示工程队整治河道的米数.(2)两工程队分别整治了60米和120米.【解析】
此题主要考查利用基本数量关系:A工程队用的时间+B工程队用的时间=20天,A工程队整治河道的米数+B工程队整治河道的米数=180,运用不同设法列出不同的方程组解决实际问题.(1)此题蕴含两个基本数量关系:A工程队用的时间+B工程队用的时间=20天,A工程队整治河道的米数+B工程队整治河道的米数=180,由此进行解答即可;(2)选择其中一个方程组解答解决问题.【详解】试题解析:(1)甲同学:设A工程队用的时间为x天,B工程队用的时间为y天,由此列出的方程组为;乙同学:A工程队整治河道的米数为x,B工程队整治河道的米数为y,由此列出的方程组为;故答案为:A工程队用的时间,B工程队用的时间,A工程队整治河道的米数,B工程队整治河道的米数;(2)选甲同学所列方程组解答如下:,②-①×8得4x=20,解得x=5,把x=5代入①得y=15,所以方程组的解为,A工程队整治河道的米数为:12x=60,B工程队整治河道的米数为:8y=120;答:A工程队整治河道60米,B工程队整治河道120米.考点:二元一次方程组的应用.21、(1)见解析;(2)∠EMF=40°【解析】
(1)易得△BCE和△BCF都是直角三角形,根据直角三角形斜边上的中线等于斜边的一半可得ME=MF=BC,即可得证;(2)首先根据三角形内角和定理求出∠ACB=60°,然后由(1)可知MF=MB,ME=MC,利用等边对等角可求出∠MFB=50°,∠MEC=60°,从而推出∠BMF和∠CME的度数,即可求∠EMF的度数.【详解】(1)∵CF⊥AB于点F,BE⊥AC于点E,∴△BCE和△BCF为直角三角形∵M为BC的中点∴ME=BC,MF=BC∴ME=MF即△MEF是等腰三角形(2)∵∠A=70°,∠ABC=50°,∴∠ACB=180°-70°-50°=60°由(1)可知MF=MB,ME=MC,∴∠MFB=∠ABC=50°,∠MEC=∠ACB=60°,∴∠BMF=180°-2×50°=80°,∠CME=180°-2×60°=60°∴∠EMF=180°-∠BMF-∠CME=180°-80°-60°=40°【点睛】本题考查了等腰三角形的判定与角度计算,熟练掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.22、(2)秒,;(2)详见解析;(3);(4)或.【解析】
(2)把BA,AD,DC它们的和求出来再除以速度每秒5个单位就可以求出t的值,然后也可以求出BQ的长;(2)如图2,若PQ∥DC,又AD∥BC,则四边形PQCD为平行四边形,从而PD=QC,用t分别表示QC,BA,AP,然后就可以得出关于t的方程,解方程就可以求出t;(3)分情况讨论,当P在BA上运动时,E在CD上运动.0≤t≤20,QC的长度≤30,PE的长度>AD=75,QC<PE,此时不能构成以P、Q、C、E为顶点的平行四边形;当P点运动到AD上,E在AD上,且P在E的左侧时,P、Q、C、E为顶点的四边形可能是平行四边形,根据平行四边形的性质建立方程求出其解就可以得出结论;当P在E点的右侧且在AD上时,t≤25,P、Q、C、E为直角梯形,当P在CD上,E在AD上QE与PC不平行,P、Q、C、E不可能为平行四边形,(4)①当点P在BA(包括点A)上,即0<t≤20时,如图2.过点P作PG⊥BC于点G,则PG=PB•sinB=4t,又有QE=4t=PG,易得四边形PGQE为矩形,此时△PQE总能成为直角三角形②当点P、E都在AD(不包括点A但包括点D)上,即20<t≤25时,如图2.由QK⊥BC和AD∥BC可知,此时,△PQE为直角三角形,但点P、E不能重合,即5t-50+3t-30≠75,解得t≠.③当点P在DC上(不包括点D但包括点C),即25<t≤35时,如图3.由ED>25×3-30=45,可知,点P在以QE=40为直径的圆的外部,故∠EPQ不会是直角.由∠PEQ<∠DEQ,可知∠PEQ一定是锐角.对于∠PQE,∠PQE≤∠CQE,只有当点P与C重合,即t=35时,如图4,∠PQE=90°,△PQE为直角三角形.【详解】解:(2)t=(50+75+50)÷5=35(秒)时,点P到达终点C,此时,QC=35×3=205,∴BQ的长为235−205=30.(2)如图2,若PQ∥DC,∵AD∥BC,∴四边形PQCD为平行四边形,∴PD=QC,由QC=3t,BA+AP=5t得50+75−5t=3t,解得t=.∴当t=时,PQ∥DC.(3)当P在BA上运动时,E在CD上运动.0⩽t⩽20,QC的长度⩽30,PE的长度>AD=75,QC<PE,此时不能构成以P、Q、C.E为顶点的平行四边形;当P点运动到AD上,E在AD上,且P在E的左侧时,P、Q、C.E为顶点的四边形是平行四边形,如图5,∴PE=QC.如图2,作DH⊥BC于H,AG⊥BC于G,∠AGB=∠DHC=90∘∴四边形AGHD是矩形,∴GH=AD=75.AG=DH.在△ABG和△DCH中,∴△ABG≌△DCH,∴BG=CH=(235−75)=30,∴ED=3(t−20)∵AP=5t−50,∴PE=75−(5t−50)−3(t−20)=255−8t.∵QC=3t,∴255−8t=3t,t=.当P在E点的右侧且在AD上时,t⩽25,P、Q、C.E为直角梯形,当P在CD上,E在AD上QE与PC不平行,P、Q、C.E不可能为平行四边形,∴t=;(4)①当点P在BA(包括点A)上,即0<t⩽20时,如图2.过点P作PG⊥BC于点G,则PG=PB⋅sinB=4t,又有QE=4t=PG,易得四边形PGQE为矩形,此时△PQE总能成为直角三角形。②当点P、E都在AD(不包括点A但包括点D)上,即20<t⩽25时,如图2.由QK⊥BC和AD∥BC可知,此时,△PQE为直角三角形,但点P、E不能重合,即5t−50+3t−30≠75,解得t≠.③当点P在DC上(不包括点D但包括点C),即25<t⩽35时,如图3.由ED>25×3−30=45,可知,点P在以QE=40为直径的圆的外部,故∠EPQ不会是直角。由∠PEQ<∠DEQ,可知∠PEQ一定是锐角对于∠PQE,∠PQE⩽∠C,只有当点P与C重合,即t=35时,如图4,∠PQE=90∘,△PQE为直角三角形。综上所述,当△PQE为直角三角形时,t的取值范围是0<t⩽25且t≠或t=35.故答案为:0<t⩽25且t≠或t=35.【点睛】本题考查四边形综合题,熟练掌握四边形的基本性质及计算法则是解题关键.23、(1)y=x+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026云南昭通市融媒体中心招聘城镇公益性岗位工作人员的3人笔试备考试题及答案解析
- 2026年湖南电气职业技术学院单招职业技能考试备考试题含详细答案解析
- 2026重庆江北机械有限责任公司招聘机械设计工程师、调度员、焊工岗位9人笔试备考题库及答案解析
- 2026年平顶山职业技术学院单招综合素质笔试备考题库含详细答案解析
- 2026年中科大附中实验学校人才引进笔试备考题库及答案解析
- 2026年内蒙古体育职业学院单招综合素质笔试参考题库含详细答案解析
- 2026重庆永川区茶山竹海街道公益性岗位人员招聘1人笔试备考试题及答案解析
- 2026天津市安定医院招聘第二批派遣制4人笔试备考题库及答案解析
- 2026福建泉州市凌霄中学春季顶岗合同教师招聘2人(二)笔试备考试题及答案解析
- 2026广西百色市西林县粮食和物资储备服务中心招聘编外聘用人员1人笔试备考题库及答案解析
- (2026年)中华护理学会团体标准2024针刺伤预防与处理课件
- 2026版离婚协议书(官方标准版)
- 医患沟通学与医学的关系
- 2026年区块链基础培训课件与可信数据应用场景指南
- 《多元统计分析》(第6版)课件 第1章 多元正态分布及其抽样分布
- 不良事件上报流程及处理
- 娱乐场所合作协议书合同
- 派出所安全培训
- 物业会计知识培训内容
- (市质检二检)福州市2024-2025学年高三年级第二次质量检测 历史试卷(含答案)
- 2024年浙江省中考数学试卷试题真题及答案详解(精校打印版)
评论
0/150
提交评论