勾股定理导学案_第1页
勾股定理导学案_第2页
勾股定理导学案_第3页
勾股定理导学案_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

勾股定理姓名_____________学号_____________学目:1.学生经历观察,探索,猜想,证明的过程,理解勾定理的概念,掌握勾股定理的公式2.让生灵活运用股定理解决实际问题。活一温知新活动二,探究新探究(一)观察图:(1)正方形面积是_________平厘米。(2)正方形的积是_______平方厘米。(3)正方形R的面积是________平方米。(4)三个正形的面积的关系是______________(5能直三角形的边长表示上述正方形的面吗?___________________(6)你能发现直角三角三边长度之间存在什么关吗?_________________________图中每一格代表一平方厘米)

探究(二)在下中用三角尺画出两条直角边分别为、的直角三角,然后用刻度尺量斜边的长,并验证上述关系对这个直角角形是否成立。请你写出来:斜。三边的关系式为归纳:勾股定理于是我知直角角形直角边的_______等__________方叫做勾股定理我还能用几何语符号表示:________________________________________________________________________________。注意:勾股定理前提条件是直角三角形!探究(三)勾股理的证明中国最早对勾股理进行证明的,是三国时期吴国的数学家赵爽爽创制了一勾股圆方图”(左图数结合得到法出了勾股定理的详细证明。赵的这个证明可谓别具匠心,极富创新意识。这图也被后人称为“赵爽弦图”请你结合图形,面积的知识证明勾股定理是否成立?你还能用其他的图方法来证明吗?试试看

归纳:前面我们用归纳:前面我们用数格子的方法得到:A的面的积_____C的积然后拼图用图形面积进行证明从而探索了直角角形的三边关系,得到勾股定:即直角三角形两角边的平方和等于斜边的平方于是已知直角三形的任意两条边长,我能求第条边活三运新知1如,在ABC中BC=24,AC=7,求AB的CAB2.将为5米的子AC斜靠在墙上,BC长为2米求梯子上端A墙的底端B的距离活四巩练习一门尺如图所,一长,宽的木板否门框通?什么

活五拓延伸.如,中所的角都是角角形四形是方。已正形A,B,C,D的边分是12,,9,求最的方形E面积活六当测试1..在eq\o\ac(△,Rt)ABC中AB=c,BC=a,AC=b,(1)已知∠C=90,a=3,b=4,则c=______;(2)已∠°,a=3,b=4,则c=_____;2.知eq\o\ac(△,Rt)ABC中a=3,b=4,则3.设角三角形的两条直角边分别a,b,斜边长为c.(1)已知a=6,c=10,求b.(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论