复合材料的失效与高性能化,高分子材料论文_第1页
复合材料的失效与高性能化,高分子材料论文_第2页
复合材料的失效与高性能化,高分子材料论文_第3页
复合材料的失效与高性能化,高分子材料论文_第4页
复合材料的失效与高性能化,高分子材料论文_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

复合材料的失效与高性能化,高分子材料论文聚合物材料由于具有密度小和加工性好的特点,无论在工业界还是人们的生活中,随处都可见到这种材料的使用。从所用材料的体积上看,聚合物材料无疑已经成为当今使用量最多和应用最广泛的材料。纳米材料,尤其是二维纳米材料,由于其特殊的光学、电学、热学、力学等性能,在过去的十多年中得到了飞速发展。随着纳米器件的高性能化和多功能化,开发综合性能优异、新的纳米及其复合材料成为当下研究的热门。石墨烯是由sp2杂化的碳原子组成的具有共轭电子构造的二维材料[1-3],它的厚度只要0.335nm,是目前发现的最薄的片层材料[4];且其具有极其优异的力学性能,抗拉强度为130GPa,弹性模量高达1TPa[5].不仅如此,石墨烯还具有非常高的电导率〔6000Scm-1〕、热导率〔5000Wm-1K-1〕和极大的比外表积〔2600m2g-1〕[6-10],这些均为制备高性能的功能化纳米复合材料提供了基础。自从粘土/聚合物纳米复合材料被报道以来[11-13],纳米复合材料就以其优异的力学性能成为科学界和工业界竞相研究的对象[14-15].随着碳纳米材料的发现,碳纳米材料/聚合物复合体系也得到广泛而深切进入的研究。当前,石墨烯已被成功地引入聚合物基体中,如环氧树脂[16-19]、酚醛树脂[20-22]、聚氨酯〔PU〕[23-26]、聚甲基丙烯酸甲酯〔PMMA〕[27-28]、聚烯烃[29-30]、聚苯乙烯〔PS〕[31-33]、尼龙〔PA〕[34-36]等,进而制备出大量的高性能石墨烯/聚合物纳米复合材料。与其它复合体系一样,石墨烯和聚合物基体之间的互相作用和相容性是实现聚合物基纳米复合材料高性能的关键。为了给相关研究人员提供参考,作者对石墨烯/聚合物纳米复合材料以及纳米复合材料高性能化的研究进展进行了综述,首先具体介绍了界面互相作用在构建石墨烯/聚合物纳米复合材料上的重要性,以及怎样去设计和控制界面性能以到达纳米复合高性能化的目的;然后给出了详细的研究实例,讨论用聚合物材料共混进行纳米分散的方式实现复合材料高性能化的方式方法和效果;最后针对材料实际使用时不可回避的失效与寿命预测问题,以橡胶密封材料为例,重点讨论了其老化失效机理,以及添加剂、应力和油介质对其老化行为的影响。1石墨烯/聚合物纳米复合材料的界面作用机理为了使石墨烯能够均匀地分散于聚合物基体中,怎样改性和功能化石墨烯外表,设计、调控其与聚合物基体间的界面作用力成了一个亟需解决的问题。石墨烯与聚合物基体间界面作用力的设计在开发高性能石墨烯/聚合物纳米复合材料中具有重要意义。一般而言,对石墨烯进行外表改性和功能化能够通过氢键作用、-堆栈作用、共价作用、成核-结晶作用以及最新发展起来的配位作用等来实现。1.1氢键作用近年来,对于诸多富含氢键的石墨烯/聚合物纳米复合材料的研究已有了很大进展,它们包括聚乙烯醇〔PVA〕[37-44]、马来酸酐接枝的聚丙烯[30]、磺化的聚苯乙烯[45]、聚吡咯[46-47]、尼龙[34-36]、PU[23-25]、纤维素[48-50]等。氢键的引入能够有效提高石墨烯/聚合物纳米复合材料的性能,为高性能聚合物基纳米复合材料的制备提供一种有效的途径。但值得注意的是,石墨烯/聚合物纳米复合材料界面之间的氢键不一定都能够提高纳米复合材料的性能。究其原因,对于某些聚合物,如聚脲[51],石墨烯与其界面之间的氢键作用会毁坏聚合物原有的氢键和结晶性,进而降低聚合物的性能。因而,在构筑以氢键为主要界面作用力的石墨烯/聚合物纳米复合材料时,需要考虑聚合物本身的构造特征,以免造成性能下降。1.2-堆栈作用石墨烯是由sp2杂化的碳原子组成的二维平面共轭构造,含有丰富的电子,因而能够充分利用它来制备以-堆栈为主要界面作用力的石墨烯/聚合物纳米复合材料。苯乙烯基聚合物是常见的一类含有共轭构造的聚合物,一直遭到人们的关注[31,52-54].可利用工业化的苯乙烯-丁二烯-苯乙烯〔SBS〕三嵌段共聚物对石墨烯进行非共价改性,其原理主要基于PS嵌段中的苯环能够与石墨烯的六元碳环构成-堆栈作用[54].当PS嵌段通过-堆栈与石墨烯发生作用后,PB嵌段能够伸展在其良溶剂中构成一种类胶束构造,进而赋予石墨烯以较高的有机溶解性。利用辅助超声技术直接对天然石墨进行大规模的液相剥离,能够获得高浓度、低缺陷的未修饰石墨烯溶液,再借助真空抽滤的方式方法,就能制备出石墨烯/SBS纳米复合材料薄膜,该薄膜的渗流阈值仅为0.25%.Shen等[52]利用-堆栈作用的原理,直接将石墨烯和PS熔融共混得到了分散性非常好的纳米复合材料。这些都为构筑具有良好导电性和高强度的石墨烯/苯乙烯基聚合物纳米复合材料提供了一种通用便利的方式方法,非常合适于大规模工业生产。对于非共价的氢键和-堆栈作用来讲,氢键只合适外表含有羟基、羧酸和/或环氧官能团的氧化石墨烯〔GO〕或r-GO纳米复合体系,而这些种类的石墨烯由于其构造的不完好性,导致了其电性能的严重下降,不适宜制备具有高导电性能的纳米复合材料;而-堆栈作用既能够存在于GO或r-GO与聚合物界面之间,可以以存在于未修饰石墨烯与聚合物界面之间,因而能够用来构筑具有完好石墨烯性能的聚合物基纳米复合材料。然而,氢键和-堆栈作用都属于弱的非共价作用力,因而由它们主导的石墨烯/聚合物纳米复合材料的加强效果通常要比共价作用弱。1.3共价作用为获得高强度的石墨烯/聚合物纳米复合材料,填料与基体之间需要很强的界面连接。共价键的键能很高,十分适用于制备高强度的石墨烯/聚合物纳米复合材料。共价作用一方面能够使石墨烯在聚合物基体中到达分子水平的分散,另一方面外加载荷能够通过共价键有效地传递至石墨烯上,进而提高石墨烯的加强效果。能够与石墨烯构成共价界面作用的聚合物基体种类繁多,包括PVA[55]、聚N-异丙基丙烯酰胺〔PNIPAAm〕[56-57]、聚丙烯酰胺〔PAAm〕[58]、环氧树脂[16,18-19]、聚酯[59-62]、PS[32-33,63]等;而实现共价连接的方式方法也很多,如缩聚[55]、自由基聚合[58]、点击化学[56,59]等。环氧树脂和酚醛树脂作为在民用和军用材料中一直发挥宏大作用的基础热固性树脂,假如能将其与石墨烯通过共价连接构筑到达分子水平分散的纳米复合材料,能够预见,其性能会大幅提高,其应用范围亦会扩大。由于氨基含有活泼氢,能够与环氧发生交联,因而Gudarzi等[16]利用对苯二胺修饰的GO与环氧树脂复合,得到了界面连接为共价作用的GO/环氧纳米复合材料。力学性能测试表示清楚,当GO的体积分数仅为0.4%时,该纳米复合材料的弯曲模量和弹性模量较环氧树脂均提高了30%左右,且试验结果与利用Halpin-Tsai模型得到的理论预测值高度符合。这些结果表示清楚,GO在环氧基体中具有良好的分散性,并且共价连接对环氧树脂基体具有明显的加强效应。Yousefi等[17]也通过GO与环氧树脂之间的共价作用得到了类似的结果;除此之外他还发现共价作用的加强效果要比-堆栈作用的强。除了环氧树脂,酚醛树脂也能够与GO或r-GO以化学键的方式连接,进而构筑具有强界面作用力的高性能纳米复合材料。于中振课题组[22]先对GO外表进行共价改性,然后将其与酚醛树脂复合固化得到了具有强共价界面作用的纳米复合材料。由于苯酚树脂具有复原作用,GO在复合材料制备经过中被复原成r-GO,因而得到的r-GO/酚醛纳米复合材料的力学性能和导电性都有很大提高。当r-GO的体积分数仅为1.7%时,该纳米复合材料的弯曲强度和弹性模量分别比纯酚醛树脂的提高了316.8%和56.7%;而且,该复合材料的导电渗流阈值仅为0.17%.除了能够与传统的聚酯、PS、环氧和酚醛等聚合物基体构成共价界面作用之外,石墨烯还能够与PVA、PNIPAAm、PAAm等功能聚合物构成共价连接,所得纳米复合材料的应用范围可拓展至生物医药等领域[56-58,64-65].能够看出,共价作用不仅能够加强传统的聚合物构造材料,而且还能够获得性能优异的功能聚合物材料,因而拓宽了石墨烯/聚合物纳米复合材料的使用范围。但是也应当看到,未经修饰的石墨

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论