版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年内蒙古自治区包头市普通高校对口单招数学自考模拟考试(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.若函数y=log2(x+a)的反函数的图像经过点P(-1,0),则a的值为()A.-2
B.2
C.
D.
2.以点P(2,0),Q(0,4)为直径的两个端点的圆的方程是()A.(x-l)2+(y-2)2=5
B.(x-1)2+y2=5
C.(x+1)2+y2=25
D.(x+1)2+y=5
3.过点M(2,1)的直线与x轴交与P点,与y轴交与交与Q点,且|MP|=|MQ|,则此直线方程为()A.x-2y+3=0B.2x-y-3=0C.2x+y-5=0D.x+2y-4=0
4.在正方体ABCD-A1B1C1D1中,二面角D1-AB-D的大小是()A.30°B.60°C.45°D.90°
5.已知集合,则等于()A.
B.
C.
D.
6.如果直线3x+y=1与2mx+4y-5=0互相垂直,则m为()A.1
B.
C.
D.-2
7.A.
B.
C.
8.函数f(x)=log2(3x-1)的定义域为()A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)
9.椭圆9x2+16y2=144短轴长等于()A.3B.4C.6D.8
10.A.B.C.D.
二、填空题(10题)11.1+3+5+…+(2n-b)=_____.
12.若f(x)=2x3+1,则f(1)=
。
13.
14.若一个球的体积为则它的表面积为______.
15.双曲线3x2-y2=3的渐近线方程是
。
16.函数f(x)=+㏒2x(x∈[1,2])的值域是________.
17.己知等比数列2,4,8,16,…,则2048是它的第()项。
18.设全集U=R,集合A={x|x2-4<0},集合B={x|x>3},则_____.
19.若,则_____.
20.
三、计算题(5题)21.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
22.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
23.解不等式4<|1-3x|<7
24.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
25.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
四、简答题(10题)26.已知椭圆和直线,求当m取何值时,椭圆与直线分别相交、相切、相离。
27.在等差数列中,已知a1,a4是方程x2-10x+16=0的两个根,且a4>a1,求S8的值
28.已知等差数列{an},a2=9,a5=21(1)求{an}的通项公式;(2)令bn=2n求数列{bn}的前n项和Sn.
29.设函数是奇函数(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)当x<0时,判断f(x)的单调性并加以证明.
30.解关于x的不等式
31.三个数a,b,c成等差数列,公差为3,又a,b+1,c+6成等比数列,求a,b,c。
32.已知函数(1)求函数f(x)的最小正周期及最值(2)令判断函数g(x)的奇偶性,并说明理由
33.点A是BCD所在平面外的一点,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求证平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
34.等差数列的前n项和为Sn,已知a10=30,a20=50。(1)求通项公式an。(2)若Sn=242,求n。
35.设等差数列的前n项数和为Sn,已知的通项公式及它的前n项和Tn.
五、解答题(10题)36.给定椭圆C:x2/a2+y2/b2(a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆已知椭圆C的离心率为/2,且经过点(0,1).(1)求椭圆C的方程;(2)求直线l:x—y+3=0被椭圆C的伴随圆C1所截得的弦长.
37.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
38.已知等差数列{an}的公差为2,其前n项和Sn=pnn+2n,n∈N(1)求p的值及an;(2)在等比数列{bn}中,b3=a1,b4=a2+4,若{bn}的前n项和为Tn,求证:数列{Tn+1/6}为等比数列.
39.已知等比数列{an},a1=2,a4=16.(1)求数列{an}的通项公式;(2)求数列{nan}的前n项和{Sn}.
40.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
41.
42.成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{bn}中的b3,b4,b5(1)求数列{bn}的通项公式;(2)数列{bn}的前n项和为Sn,求证:数列{Sn+5/4}是等比数列
43.已知递增等比数列{an}满足:a2+a3+a4=14,且a3+1是a2,a4的等差中项.(1)求数列{an}的通项公式;(2)若数列{an}的前n项和为Sn,求使Sn<63成立的正整数n的最大值.
44.
45.
六、单选题(0题)46.已知双曲线x2/a2-y2/b2=1的实轴长为2,离心率为2,则双曲线C的焦点坐标是()A.(±1,0)B.(±2,0)C.(0,±2)D.(±1,0)
参考答案
1.D
2.A圆的方程.圆心为((2+0)/2,(0+4)/2)即(1,2),
3.D
4.C
5.B由函数的换算性质可知,f-1(x)=-1/x.
6.C由两条直线垂直可得:,所以答案为C。
7.B
8.A函数的定义.由3x-1>0,得3x>1,即3x>30,∴x>0.
9.C
10.A
11.n2,
12.3f(1)=2+1=3.
13.π/2
14.12π球的体积,表面积公式.
15.
,
16.[2,5]函数值的计算.因为y=2x,y=㏒2x为増函数,所以y=2x+㏒2x在[1,2]上单调递增,故f(x)∈[2,5].
17.第11项。由题可知,a1=2,q=2,所以an=2n,n=log2an=log22048=11。
18.B,
19.27
20.-3由于cos(x+π/6)的最小值为-1,所以函数f(x)的最小值为-3.
21.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
22.
23.
24.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
25.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
26.∵∴当△>0时,即,相交当△=0时,即,相切当△<0时,即,相离
27.方程的两个根为2和8,又∴又∵a4=a1+3d,∴d=2∵。
28.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)
∴数列为首项b1=32,q=16的等比数列
29.
∴
∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴
∴得0<b<∵b∈Z∴b=1∴(2)设-1<<<0∵
∴
若时
故当X<-1时为增函数;当-1≤X<0为减函数
30.
31.由已知得:由上可解得
32.(1)(2)∴又∴函数是偶函数
33.分析:本题考查面面垂直的证明,考查二面角的正切值的求法。(1)推导出CD⊥AB,AB⊥AC,由此能证明平面ABD⊥平面ACD。
(2)取BC中点O,以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BD-C的正切值。解答:证明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中点O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,
34.
35.(1)∵
∴又∵等差数列∴∴(2)
36.
37.
38.
39.
40.
41.
42.(1)设成等差数列的三个正数分别为a-d,a,a+d依题意,得a-d+a+a+d=15,解得a=5,所以{bn}中的,b3,b4,b5依次为7-d,10,18+d依题意,有(7-d)(18+d)=100,解得d=2或d=-13,又因为成等差数列的三个数为正数,所以d=2.故{bn}的第3项为5,公比为2;由b3=b1×
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北京林业大学《移动软件开发技术》2021-2022学年期末试卷
- 2024至2030年单色印刷品项目投资价值分析报告
- 北京联合大学《自动控制原理》2022-2023学年期末试卷
- 北京联合大学《机器人操作系统》2022-2023学年期末试卷
- 北京联合大学《电路、信号与系统》2022-2023学年期末试卷
- 北京联合大学《城市轨道交通列车控制技术》2022-2023学年期末试卷
- 2024年前后悬架项目可行性研究报告
- 2024年健身车把项目可行性研究报告
- 2024至2030年中国吸声纤维吸音板数据监测研究报告
- 政府采购印刷服务合同
- 2024-2030年中国福建省加油站行业投资潜力分析及行业发展趋势报告
- 酒水知识培训课件
- 产业技术创新联合体协议书
- 2024年中考语文考前抓大分技法之小说阅读专题05小说句子作用(原卷版+解析)
- 人像摄影教程ppt
- 生活中的物理-完整版课件
- 道路护栏采购项目供货、运输方案
- 高中物理 人教版 必修三《电磁感应与电磁波初步》单元教学设计
- 2024年银行从业考试银行业法律法规及综合能力重点整理
- 朱智贤的心理发展观课件
- 项目对比方案模板
评论
0/150
提交评论